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1 Numerical Methods: Course Overview (August

25, 2025)

Main Goal: Learn how to use computers to solve scientific problems and mathe-
matical problems of a continuous nature. Problems of a discrete nature typically are
in computer science courses

1.1 Example Problems

• Solving nonlinear equations

Given a function f : R→ R, we seek to find x ∈ R such that f(x) = y.

Example To compute
√
y, we want to find x such that x2 = y. One such method

is the Babylonian method (or Heron’s method), which we’ll learn as Newton’s
method for solving x2 = y.

• Polynomial interpolation

For a given function f : [0, 1] → R, it
might be extremely expensive or impossi-
ble to compute at some points. The goal of
polynomial interpolation is to find a poly-
nomial

pn(x) =
n∑
j=0

ajx
j

so that f (xi) = pn (xi) for n + 1 points
xi. Hopefully f(x) ≈ pn(x) for x ∈ [0, 1]
and pn is cheap to evaluate.

x

y

pn

f

x1 x2 x3

• Numerical integration/quadrature
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Given f : [0, 1]→ R, we would like to compute

ˆ 1

0

f(x)dx.

Solving integrals by hand is very difficult, so we approxi-
mate by ˆ 1

0

f(x)dx ≈
n∑
j=0

wjf
(
xj
)
.

For example if wj = 1
n

and xj = j
n+1

, we have a Riemann
sum.

x

y

f(x)

• Solving differential equations

Many problems in physics/engineering can
be written as a differential equation

y′(t) = f(t, y(t))

These problems become too difficult to
solve by hand quickly.
Example: Swinging pendulum m = 1

y′′(t) = − g
L

sin(y(t))

y length of pendulum = L

• Solving systems of linear equations Numerous problems can be reduced to
solving

Ax = b or

A11x1 + A12x2 + · · ·+ A1nxn = b1
...

...

An1x1 + An2x2 + · · ·+ Annxn = bn

Such problems arise in statistics/data science (like linear regression) solving partial
differential equations and more. In my own research, I regularly have to solve
systems where n ≈ 100, 000 or n ≈ 1, 000, 000.

1.2 Why should we care?

Modern science relies more heavily on computation and modern engineering/business
also leverages computation.
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• National Weather Service forecasts regularly require solving systems of linear
and nonlinear equations and solving differential equations.

• Data science Many online services and data science tools use linear algebra. Some
of the higher performing models for recommending movies in the Netflix Prize Problem
computed a Singular Value Decomposition.

• Large scale scientific experiments leverage more computational tools. The
LIGO detector for gravitational waves relies heavily on numerical integration tech-
niques.

2 Floating Point and Machine Representation of

Numbers (August 27, 2025)

Goals: Understand how machines represent numbers and how this impacts comput-
ing.

Example 2.1. What is 0.1 + 0.2?

• In exact arithmetic, 0.1 + 0.2 = 0.3

• In Python, 0.1 + 0.2 = 0.30000000000000004

Why is there an extra 4?

2.1 Binary representation of numbers

We first review how to write numbers in binary (or base 2).

Example 2.2 (converting binary to base 10). Take (110.11011)2. The (·)2 means it
is written in base 2. We have

(110)2 = 1× 22 + 1× 21 + 0× 20 = 6

(0.11011)2 = 1× 2−1 + 1× 2−2 + 0× 2−3 + 1× 2−4 + 1× 2−5 =
1

2
+

1

4
+

1

16
+

1

32
=

27

32
.

Hence,

(110.11011)2 =

(
6

27

32

)
10

.
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2.1.1 Converting base 10 to binary

The general procedure is for converting base to to binary for integers is below.

• Divide by 2

• Keep track of remainder (0 or 1)

• Keep going into the number = 0.

• remainders are digits in reverse order of binary number

Example 2.3 (converting base 10 to binary for integers). We want to find (71)10 =
(???)2. We follow the procedure outlined above

Number Remainder
71
35 1
17 1
8 1
4 0
2 0
1 0
0 1

• Go down each row dividing by 2

• Right column is remainder

Answer

(71)10 = (1000111)2

What is the procedure for fractions? We outline the procedure below.

• Multiply by 2

• Keep track of integer part (0 or 1) and fractional part

• Multiply fractional part by 2

• Repeat

• Integer part are binary expansion away from decimal

Example 2.4 (converting base 10 to binary for fractions). We want to find
(
5
8

)
10

=
(???)2. We follow the procedure outlined above.
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5

8
× 2 = 1 +

1

4
1

4
× 2 = 0 +

1

2
1

2
× 2 = 1 + 0

0× 2 = 0 + 0

stop

• Go down each row multiplying by 2

• Split with integer part and fractional part

Answer (
5

8

)
10

= (0.101)2

Example 2.5 (repeating decimal expansion). What about
(
1
3

)
10

= (???)2?

1

3
× 2 = 0 +

2

3
2

3
× 2 = 1 +

1

3
1

3
× 2 = 0 +

2

3
2

3
× 2 = 1 +

1

3
...

It repeats! The answer is (
1

3

)
10

= (0.01)2

2.1.2 Going in reverse to find number in base 10

How do we find numbers in base 10 given a repeating binary expansion? There are
a few tricks.

Example 2.6 (base 10 number from repeating binary decimal). We want to find
x = (0.01)2 = (???)10. The trick is to multiply x by 4 and subtract in order to cancel
the repeating decimal part

x = (0.01)2

4x = (1.01)2

3x = 4x− x = (1)2 = 1 =⇒ x =
1

3

9



2.2 Double Precision Floating Point Representation

Definition 2.1 (double precision floating pt representation). Let x be a real number.
It’s double precision floating point representation is

fl(x) = (−1)s × 1. b1b2 . . . b52︸ ︷︷ ︸
52 bits

×2e

where e is an integer exponent in binary and s = 0 or 1 is a sign bit. The 52 bits in
the main chunk are called the mantissa. The integer exponent is represented with
11 bits and is stored as in the computer as (e+ 1023)2.

Example 2.7 (examples of floating point representations). Below are a few examples

• x = 13 = (1101)2

fl(13) = fl((1101)2) = +1.101× 23 = +1.101× 2(11)2

• x = 2 5
8

= (10.101)2

fl

(
2

5

8

)
= fl((10.101)2) = +1.0101× 21

• x = 1
3

= (0.01)2

fl

(
1

3

)
= fl((0.01)2) = +1.0101 . . .× 2−2 = +1.0101 . . .× 2−(10)2

The last example of x = 1/3 leads to some questions about what do we do at the
52nd bit?

2.2.1 Rounding rules for floating point representation

For our example of x = 1/3, the mantissa looks like.

mantissa = 0101 . . . 010 1︸︷︷︸
=b52

| 0︸︷︷︸
=b53

1 . . .

For floating point, we want to round the number to the nearest possible floating
point number, which leads to the following rules

• If b53 = 0, we round down (or chop)
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• If b53 = 1, we round up (add 1 to b52 and then chop)

• The special case of b53 = 1 with all other remaining bits = 0, we round up or down
so that b52 = 0. This is known as round to even.

Going back to the example of x = 1/3, the rules tell us to chop, so

fl

(
1

3

)
= +1.0101 . . . 0101× 2−(10)2 .

Exercise 2.1. Show that the double precision floating point representation of x = 0.1
is

fl(0.1) = 1.100110011 . . . 0011010× 2−(100)2 .

2.3 Rounding error

Question: How big on an error do we make when rounding?
Let’s consider x to be some real number and let x−, x+ be the closest floating

point numbers above and below x. That is,

x− = fl(x−) ≤ x ≤ fl(x+) = x+

We say that x−, x+ are machine numbers because they are represented exactly in
floating point.

x− x+x

fl(x) = x+

Figure 1: Rounding x to x+.

Notice that we can write using the floating point conventions without rounding
just yet:

x = (1.xxxxxx . . .)× 2e

x+ = (1.xxxxxx1 . . .)× 2e

x− = (1.xxxxxx0 . . .)× 2e.
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Notice that in this case the midpoint x++x−
2

is the worst case scenario and the absolute
value of x satisfies |x| ≥ 2e. As a result, we can bound the relative rounding error

|x− fl(x)|
|x|︸ ︷︷ ︸

called a relative error

≤ 1

2

|x+ − x−|
|x| ≤ 1

2

2−52 × 2e

2e
= 2−53

The left hand side is a relative error since we divided by |x|, the numerator |x−fl(x)|
is an absolute error. In the end, we have that the largest relative rounding error we
expect to make is

1

2
ε = 2−53 ≈ 1.1× 10−16.

Here, ε is known as machine epsilon or unit round off for double precision floating
point.

3 Floating Point and Machine Representation of

Numbers Cont. (August 29, 2025)

3.1 Double Precision Representation:Practice with shifting
the exponent

Recall the double precision floating point number

fl(x) = (−1)s1.b1b2 . . . b52 × 2e

How is this represented in the computer? One way is to represent it as

s (e+ 1023)2 b1 b2 b3 . . . b52

Example 3.1 (some more floating point examples). Let’s review some examples

• fl(2) = 1.000 . . .× 21

0 10000000000︸ ︷︷ ︸
=(·)2=e+1023=1024

0 0 0 . . . 0
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• fl(1/3) = 1.0101 . . . 01× 2−2

0 01111111101︸ ︷︷ ︸
=(·)2=e+1023=1021

0 1 . . . 0 1

Exercise 3.1 (fl(.1)). Show that the double precision floating point representation
of x = 0.1 in the above table format is

0 01111111011 100110011 . . . 0011010

3.2 Single Precision Floating Point

The book goes over single precision quite a bit, so we quickly go over single precision.

Definition 3.1 (single precision floating point). Let x be a real number. Its single
precision floating point representation is

fl(x) = (−1)s × 1.b1b2 · · · b23 × 2e

where the rounding rules are same as double precision. Note that the exponent is
stored in 8 bits as the binary expansion of e+ 127.

We also note that there is a machine epsilon for single precision too. Machine ε
for single precision is

ε = 2−23 ≈ 1.2× 10−7,

so the largest relative rounding error we expect to make is 2−24 ≈ 6× 10−8.

3.3 Round-off Errors and Where Floating Point Can Go
Wrong

We now go back to double precision. Recall from last time that we showed

|x− fl(x)|
|x| ≤ ε

2
≈ 1.1× 10−16

so if x is not represented exactly, then we make a small error. If x = fl(x), then we
say x is a machine number.
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3.4 Arithmetic on a Computer

Even if x, y are machine numbers, their addition may not be i.e.

x+ y 6= fl(x+ y)

In this case, we can think of the computer as doing the following

• Adjust numbers so exponents are the same (known as padding). For example if
x = 1.0000 . . .× 20, and y = 1.00000× 2−53, then we write

x = 1.0000 · · · 0× 20

y = 0. 000 · · · 1︸ ︷︷ ︸
53 bits

×20

• We then add x and y.
x+ y = 1.0000 · · · 1× 20

• We finally find a floating point representation (or round)

fl(x+ y) = 1.000× 20 = x

The error we make is due to rounding error, so we can write

fl(x+ y) = (x+ y)(1 + δ) = x(1 + δ) + y(1 + δ)

where δ is some error such that δ ≤ ε
2
.

3.4.1 Error of Adding Two Numbers

Now suppose x, y are note machine numbers, i.e. x 6= fl(x), y 6= fl(y). We then
have the computer first round:

fl(x) = x (1 + δ1) , fl(y) = y (1 + δ2)

and then add and round again

fl(fl(x) + fl(y)) = (fl(x) + fl(y)) (1 + δ3)

Combining leads to

fl(fl(x) + fl(y)) =
[
x (1 + δ1) + y (1 + δ2)

]
(1 + δ3)

= x+ y +
[
δ1x+ δ2y + δ3(x+ y) + xδ1δ3 + yδ2δ3︸ ︷︷ ︸

We drop these terms because δ1δ3
is very small compared to δ1 or δ3.

]
≈ x+ y +

(
δ1x+ δ2y + δ3(x+ y)

)
14



Hence, the relative error is approximately

|fl(fl(x) + fl(y))− (x+ y)|
|x+ y| ≈

∣∣∣∣δ3 +
δ1x+ δ2y

x+ y

∣∣∣∣ (1)

where |δi| ≤ ε
2

for i = 1, 2, 3. We now go over two examples, but first we review some
useful properties of absolute value.

Remark 3.1 (properties of | · |). Let x, y be real numbers. Two useful properties of
absolute value are

|x+ y| ≤ |x|+ |y| (triangle inequality)

|xy| = |x| |y| (multiplicativity)

Example 3.2 (adding .1 + .2). If we replace x = .1, y = .2 into (1), we get

|fl(fl(.1) + fl(.2))− .3|
.3

≈
∣∣∣∣δ3 +

δ10.1 + δ20.2

0.3

∣∣∣∣
≤ |δ3|+

∣∣∣∣δ10.1 + δ20.2

0.3

∣∣∣∣
≤ |δ3|+

δ1
3

+
2δ2
3

≤ ε

2
+
ε

6
+

2ε

6
= ε.

This upper bound is actually quite close to the true error. The relative error of
computing .1 + .2 in Python is 1.85× 10−16, while our upper bound calculated above
is 2.22× 10−16.

Example 3.3 (catastrophic cancelation). Say we leave x > 0 but now set y = −x+η
for some small η. Using (1), we have

|fl(fl(x) + fl(−x+ η))− 0|
|x| ≈

∣∣∣∣δ3 +
δ1x+ δ2(−x+ η)

η

∣∣∣∣
≤ |δ3|+

|x|
|η| |δ1|+

|η − x|
|η| |δ2|

≤
(

1 +
|x|+ |η − x|

|η|

)
ε

2

Notice that

lim
η→0

(
1 +
|x|+ |η − x|

|η|

)
ε

2
=∞,
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Figure 2: Loss of significance during catastrophic cancelation of computing x+(−x+
η) in double precision floating point.

which means we could potentially have very large relative error. This is known as
loss of significance. The particular issue is we tried to subtracting two nearly
equal numbers, which is known as catastrophic cancelation. Figure 2 is a plot of
the relative error of computing x+ (−x+ η) vs the upper bound obtained above for
different values of η. We can see that our upper bound is quite accurate and there
true is a loss of significance. Notice that even for η = 10−7, we have lost almost half
our digits of accuracy!

4 Round-off Errors and Computer Arithmetic Con-

tinued (September 3, 2025)

Let’s recap from last time. We showed

fl(fl(x) + fl(y)) ≈ x+ y +
(
δ1x+ δ2y + δ3(x+ y)

)
,

so the absolute error is∣∣fl(fl(x) + fl(y))− (x+ y)
∣∣ =

∣∣δ1x+ δ2y + δ3(x+ y)
∣∣

16



and the relative error is∣∣fl(fl(x) + fl(y))− (x+ y)
∣∣

|x+ y| =

∣∣δ1x+ δ2y + δ3(x+ y)
∣∣

|x+ y| .

We also showed that in the case y = −x+ η, we have

relative error ≤ ε

2

(
1 +
|η − x|+ |x|

|η|

)
,

so as η → 0, we have RHS → ∞. The blow up of relative error is called loss
of significance, which arose from catastrophic cancelation when subtracting two
nearly equal numbers.

4.1 Strategies to Avoid Loss of Significance

There are two strategies we’ll discuss to avoid loss of significance and present exam-
ples on how they work.

4.1.1 Rationalize an quantity

Example 4.1 (quadratic formula). To find x such that ax2 + bx+ c = 0, we know

x =
−b+

√
b2 − 4ac

2a
,
−b−

√
b2 − 4ac

2a
.

If b > 0, and b is much larger than |4ac|, then we might experience loss of significance.

The trick is to multiply by −b−
√
b2−4ac

−b−
√
b2−4ac :

x =
−b+

√
b2 − 4ac

2a

(
−b−

√
b2 − 4ac

)
−b−

√
b2 − 4ac

=
��b2 −

(
��b2 − 4ac

)
−2a

(
b+
√
b2 − 4ac

)
=

−2c(
b+
√
b2 − 4ac

)
Notice that the above formula does not involve subtracting two nearly equal numbers.
We’ll see this in a code demo.
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4.1.2 Taylor series

Example 4.2 (Taylor series formula to avoid loss of significance). Let f(x) = sinx−
x. If x ≈ 0, then sinx ≈ x and we expect some loss of significance. The trick is to
write a Taylor series for sinx:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

so that

f(x) = sinx− x = ��−x+�x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

= −x
3

3!
+
x5

5!
− x7

7!
+ · · ·

There is a general procedure of when to apply Taylor series. Say we want to
compute

f(x)− g(x).

• Find points z such that for x ≈ z, we have f(x)− g(x) ≈ 0.

• More specifically, find points z such that for x ≈ z, we have f(x)−g(x) ≈ c(x−z)n

for n > 1. The formula f(x)− g(x) is fine for x far away from z, so we don’t need
to modify it.

• For x ≈ z, we apply Taylor series to f, g. Say the exponent n was 2. We have the
following Taylor expansions around z

f(x) = a0 + a1(x− z) + a2(x− z)2 + a3(x− z)3 + · · ·
g(x) = a0 + a1(x− z) + b2(x− z)2 + b3(x− z)3 + · · ·

Hence, a better formula for computing f(x)− g(x) is

f(x)− g(x) = (a2 − b2)(x− z)2 + (a3 − b3)(x− z)3 + · · ·

A natural question is when should we use the Taylor series formula vs the normal
formula? It has to do with quantifying the loss of significance.

Theorem 4.1 (loss of significance in subtraction). Let x, y be machine numbers i.e.
x = fl(x), y = fl(y). If

2−p ≤ 1− y

x
≤ 2−q

for positive integers p, q. Then we have

q ≤ number of bits lost when computing fl(x− y) ≤ p.

18



If we only want to lose 1 bit computing f(x) = sin x− x, then we want

1

2
≤ 1− sinx

x
.

We use the Taylor expansion for sin x:

sinx = x− 1

6
x3 + · · ·

to solve for values of x

1

2
≤ 1− sinx

x
= 1− x− 1

6
x3 + · · ·
x

=
1

6
x3 + · · · ≈ 1

6
x3

If we want to use the standard sinx − x and only lose 1 bit of accuracy, then we
require |x| ≥

√
3 ≈ 1.7.

4.2 Other issues with floating point

Recall in double precision

fl(x) = ±1.b1b2 . . . b52 × 2e.

where the exponent e is stored in 11 bits as e + 1023. The range for how e + 1023
can be stored is

0 ≤ e+ 1023 ≤
10∑
j=0

2j = 1024 + 1023

Hence, our valid range for e is

−1023 ≤ e ≤ 1024.

There are two issues that can occur

• Overflow: If e > 1024, the number is too large to store in double precision, so we
get overflow. Trying to put 21025 in the computer when result in an overflow error.

• Underflow: If e < −1023, the number is too small to store in double precision,
so we get underflow. Trying to put 2−1024 in the computer when result in an
underflow error.

19



5 Solving Nonlinear Equations or Root Finding

with Bisection Method (September 5, 2025)

The problem we are interested in solving is given f : R→ R, we want to find x such
that

f(x) = 0.

If we wanted to solve f(x) = c for some c 6= 0, then we can just set g(x) = f(x)− c
and solve g(x) = 0. In general, solving nonlinear equations boils down to solving for
roots of f .

5.1 Bisection Method

Suppose f is continuous and suppose we have a < b such that

f(a) < 0, f(b) > 0.

Notice that if f(a) = 0 or f(b) = 0, then we would have solved the problem.
By Intermediate Value Theorem from calculus, we have that there is a true root

a ≤ r ≤ b such that
f(r) = 0,

so we know that there is a root in the interval [a, b].

x

y

a

bcr

f

Question: What is a good or natural guess for r given that we don’t know where
it is?

A reasonable guess would be to take the midpoint

c =
a+ b

2
.

Now that we have a guess c, where do we check to figure out where to guess next?
There are 3 cases to consider.
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• Case 1: If f(c) = 0 or |f(c)| < tol for some specified user tolerance. In this case,
we’re done.

•
Case 2: If f(c) > 0, then by IVT and the
fact that f(a) < 0, we know there is a root
in [a, c].

x

y

a

bc

f

•
Case 3: If f(c) < 0, then by IVT and the
fact that f(b) > 0, we know there is a root
in [c, b].

x

y

a

b

c

f

Given these three cases, we have the next guesses

• Case 1: Next guess d = c

• Case 2: Next guess d = a+c
2

• Case 3: Next guess d = c+b
2

.

Notice that these cases were carried out assuming f(a) > 0 and f(b) < 0. Is there
an easy way to check the cases if f(a) < 0 and f(b) > 0?

Obviously Case 1 stays the same. For Case 2, we just need to check that

f(a) · f(c) < 0.

We can see that the above condition covers all the situations

f(a) < 0 and f(c) > 0 ⇒ f(a) · f(c) < 0
f(a) > 0 and f(c) < 0 ⇒ f(a) · f(c) < 0.

Similarly, for Case 3, we just need to check that

f(c) · f(b) < 0.

21



The whole algorithm just repeats this procedure.

Input: Function f(x), interval [a, b], function value tolerance ftol, root
absolute error tolerance atol, maximum iterations N

Output: Approximate root, c, of f guaranteed to satisfy |f(c)| < ftol or
|c− r| < atol or returns message of failure.

if f(a)f(b) ≥ 0 then
return “Function values at endpoints must have opposite signs”;

end
for i← 1 to N do

c← (a+ b)/2;

if |f(c)| < ftol or |b−a|
2

< atol then
return c;

else
if f(a)f(c) < 0 then

b← c;
else

a← c;
end

end

end
return “Method failed after N iterations”;

Algorithm 1: Bisection Method

Remark 5.1 (binary search). Notice that bisection method is just a continuous
version of binary search.

5.2 Convergence and Error Analysis of Bisection

Notice that we have two convergence conditions of the bisection algorithm in Algo-
rithm 1. The first |f(c)| < ftol seems natural since we want to stop when we find

an approximate root. We now explain the second condition |b−a|
2

< atol.
Say that a0 ≤ r ≤ b0 is the true root of f . Then, we have the following worst

case estimate on the absolute error |r − c0| below.

|r − c0| ≤
b0 − a0

2
. a r c b

This means that the length of the bracket divided by 2 is an error estimator of the

22



algorithm, which means that if b0−a0
2

< atol, then |r − c0| < atol. This is why we
have the stopping condition on the bracket b−a

2
< atol.

Continuing the algorithm, let’s say that c1 = a0+c0
2

is the next guess and the new
bracket is a1 = a0 and b1 = c0. We can similarly estimate the error again

|r − c1| ≤
b1 − a1

2
=
c0 − a0

2
=
b0 − a0

4
=
b0 − a0

21+1

If we repeat the iteration, we get after n steps of the algorithm:

|r − cn| ≤
b0 − a0
2n+1

.

5.2.1 Plotting Error on Semilog Plot

Often to dispay the error of an algorithm is better to use a log scale for the y or x
axis or both. In this case, we’ll use a log scale for the y axis, which is like plotting
log |r − cn| vs n.Recall that the error is

|r − cn| ≤
b0 − a0
2n+1

.

Taking the log of both sides yields

log |r − cn| ≤ log(b0 − a0)− (n+ 1) log 2,

so the error on a plot with log scale for the y axis and linear scale for the x axis (or
semilogy plot) looks like a straight line with slope m = − log 2.

0 10 20 30 40 50
Iterations

10 14

10 11

10 8

10 5

10 2

101

Er
ro

r log(2)

1

Error Decay of Bisection
Error
b a
2n + 1

Figure 3: Error Decay of Bisection as number of iterations n increases on semilogy
plot.
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6 Newton’s Method (September 8, 2025)

Today, we’ll discuss a method that is much faster than bisection, which is called
Newton’s method. The main idea of this method is to replace f with a linear ap-
proximation and solve for the zero of the linear approximation.

x

y

tangent line @ x1

x1

r
x2

f

The equation for the tangent line at x1 is

y = `(x) = f ′(x1)(x− x1) + f(x1).

Solving for x2 such that `(x2) = 0, we get

0 = f ′(x1)(x2 − x1) + f(x1)

−f (x1) = f ′ (x1) · (x2 − x1)
−f (x1)

f ′ (x1)
= (x2 − x1)

x1 −
f (x1)

f ′ (x1)
= x2

As a result, the Newton iteration is the follows. Given xi, we compute

xi+1 = xi −
f(xi)

f ′(xi)

6.1 Error Analysis of Newton Iteration

We still don’t have an algorithm just yet. We still need to decide when to stop.
However, we can still analyze the errors of the iteration. To do this, we need Taylor’s
theorem.
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Theorem 6.1 (Taylor polynomial). Suppose f has n + 1 continuous derivatives.
Then for real number x and h > 0, we have

f(x+ h) =
n∑
k=0

f (k)(x)

k!
hk + En+1

where En+1 = f (n+1)(c)
(n+1)!

hn+1 and x ≤ c ≤ x+ h.

A special case that we’ll use is for n = 1:

f(x+ h) = f(x) + h · f ′(x) +
f ′′(c)

2
h2.

Taylor’s theorem is an important theoretical tool for this class, so it is very important
to review it. Once we have Taylor, we are ready to prove the following theorem.

Theorem 6.2 (quadratic convergence of Newton). Suppose that f has two continu-
ous derivatives in a neighborhood of a root r. Further assume that f ′(r) 6= 0. Then
there is a δ > 0 such that if |x0 − r| < δ, then the error en = xn − r of the Newton
iteration satisfies

|en+1| ≤
[

1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
e2n

and en → 0 as n→∞.

Proof. We break the proof into several steps. We first begin by assuming |xn−r| ≤ δ
for δ > 0 chosen later.
Step 1: (iteration or equation of the error en). We first write down an equation to
describe the evolution or iteration of the error. Note that the Newton iteration is

xn+1 = xn −
f(xn)

f ′(xn)

subtracting r from both sides leads to an equation for the error

en+1 = xn+1 − r = xn − r −
f(xn)

f ′(xn)
= en −

f(xn)

f ′(xn)

The goal will be to have an error equation of the form en+1 = Ceαn, so we do not
want to have en added to something. To this end, we combine the fractions

en+1 = en −
f(xn)

f ′(xn)
=
enf

′(xn)− f(xn)

f ′(xn)
.
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Step 2: (Taylor expansions). We now apply a Taylor expansion to in the numerator.
Notice that r = xn − (xn − r) = r − en. Then,

0 = f(r) = f(xn)− f ′(xn)en +
f ′′(cn)

2
e2n

where cn is in between r and xn. If we rearrange the above equation as

f ′′(cn)

2
e2n = f ′(xn)en − f(xn),

we notice that the RHS is the numerator of our error equation. Hence, the error
equation reads

en+1 = en −
f(xn)

f ′(xn)
=

f ′′(cn)

2f ′(xn)
e2n.

Since xn and cn are satisfy |xn − r|, |cn − r| ≤ δ, we can then write an upper bound

|en+1| = en −
f(xn)

f ′(xn)
=

∣∣∣∣ f ′′(cn)

2f ′(xn)

∣∣∣∣ e2n ≤
[

1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
e2n

Notice that if we have the desired error estimate. We just now need to pick δ.
Step 3: (choice of δ) All we have so far is that if |xn − r| < δ, then

|en+1| ≤
[

1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
e2n.

It is possible that the error can be actually increasing if en is large the RHS could
be ∞ if min|x−r|≤δ |f ′(x)| = 0. In order to guarantee that en → 0, we need to pick
δ sufficiently small. In order to guarantee that |en+1| ≤ |en|, we need to show that
|en+1|
|en| . Using the error equation, we have

|en+1|
|en|

≤
[

1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
|en| ≤

[
1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
δ.

Notice that the RHS only depends on δ. Since f is twice continuously differentiable
with f ′(r) 6= 0, we have

lim
δ→0

[
1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
=

1

2

|f ′′(r)|
|f ′(r)| ,
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Hence,

lim
δ→0

[
1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
δ =

[
1

2

|f ′′(r)|
|f ′(r)|

]
× 0 = 0.

Therefore, there is a δ > 0 sufficiently small such that if |en| < δ, then |en+1| ≤
|en| < δ. Hence, ek → 0 as k →∞ and we have the desired error estimate.

7 Newton’s Method Continued (September 10, 2025)

Recall the Newton iteration

xn+1 = xn −
f(xn)

f ′(xn)

and the theorem we proved last time about the Newton iteration.

Theorem 7.1 (quadratic convergence of Newton). Suppose that f has two continu-
ous derivatives in a neighborhood of a root r. Further assume that f ′(r) 6= 0. Then
there is a δ > 0 such that if |x0 − r| < δ, then the error en = xn − r of the Newton
iteration satisfies

|en+1| ≤
[

1

2

max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

]
e2n

and en → 0 as n→∞.

Remark 7.1. There are a few points to be made about the proof.

• Notice that there is a constant C > 0 such that

|en+1| ≤ Ce2n.

This is known as quadratic convergence. To compare with bisection, we know
that error estimator ẽn = (bn − an)/2 satisfies

ẽn+1 ≤
1

2
ẽn,

which is linear convergence.

• When an algorithm has quadratic convergence, the number of correct digits doubles
every step. A quadratically converging iteration is very fast!
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• The proof and theorem have a problem if f ′(r) = 0. This issue actually shows up
in practice and is called ill-conditioning and the problem of solving f(x) = 0 is
ill-conditioned.

• Notice that we made an assumption that |xn−r| < δ, which is assuming that xn is
close enough to r. This kind of theorem is known as a local convergence result.
Newton may not converge for all possible guesses as we’ll see in the code demo.

7.1 Reading Semilogy Plots

We have the following definitions of convergence for root finding problems.

Definition 7.1 (convergence in root finding). Let en be a sequence such that en → 0
as n→∞. We say that

• en exhibits linear convergence if there is a 0 < c < 1 such that

|en+1| ≤ c|en|

• en exhibits quadratic convergence if there is a 0 < c <∞ such that

|en+1| ≤ c|en|2

• en exhibits superlinear convergence if there is a 0 < c < ∞ and 1 < α < ∞
such that

|en+1| ≤ c|en|α

We now repeat a similar argument If a sequence of errors is converging linearly,
then we expect

|en| ≤ cn|e0|
If we repeat the arguments for bisection, we see that

log |en| ≤ n log c+ log |e0|

and the error will look like a straight line with slope log c on a semilogy graph. The
steeper the slope, the faster the method converges. For superlinear convergence, the
graph will look like an arc bending downwards.
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Figure 4: Convergence of Newton and bisection to solve for sin(x) = 0. Newton here
converges quadratically and the error estimator for bisection converges linearly.

7.2 Where Newton can go wrong

There are a few failure modes for Newton method.

7.2.1 Initial Guess is Not Close to Root

Recall that Newton is only locally convergent. The initial guess may not be close
enough to the root.

Example 7.1 (runaway). Let f(x) = xe−x. For x0 = 2, we have that x1 = 4, x2 ≈
5.6 and xn →∞ as n→∞.

x0 x1 x2

x

y
f(x) = xe−x
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Example 7.2 (cycles). Here, we take f(x) = x√
x2+1

, f ′(x) = 1
(x2+1)3/2

and x0 = 1.

When then have that x1 = −1, x2 = 1 and xn = (−1)n for all n.

x0

x1 x

y

7.2.2 Slow convergence to a multiple root

Newton method can also be quite slow if f ′(r) = 0 and the previous theorem does
not apply. We start with an example.

Example 7.3 (f(x) = xm for m > 1). Let f(x) = xm. We have that f ′(x) = mxm−1

There is a root r = 0 but f ′(r) = 0. Consider x0 = 1. We have

n = 0, x0 = 1, f(x0) = 1, f ′(x0) = m

n = 1, x1 = 1− 1

m
, f(x1) =

(
1− 1

m

)m
, f ′(x1) = m

(
1− 1

m

)m−1
For n = 2, we have that

x2 = 1− 1

m
− (1− 1

m
)m

m
(
1− 1

m

)m−1 =

(
1− 1

m

)
− 1

m

(
1− 1

m

)
=

(
1− 1

m

)2

=

(
m− 1

m

)2

.

Continuing the pattern, we get

xn =

(
m− 1

m

)n
.

Note that

en+1 =

(
m− 1

m

)n+1

=

(
m− 1

m

)
en,
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Here, the convergence is linear and convergence is potentially slower than bisection
method! Below is are semilogy plots of the error vs iteration for Newton with m = 3.
We can see that Newton is slower than bisection in this case.
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Slow convergence of Newton for solving x3 = 0
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Figure 5: Convergence of Newton and bisection to solve for x3 = 0. Newton here
converges linearly and is slower than bisection method.

In the above example, r = 0 is what we call a multiple root with multiplicity m.
We also say that solving f(r) = 0 is an ill-conditioned problem.

Definition 7.2 (multiple root). A root r of f is a multiple root with multiplicity m
if

f (k)(r) = 0, for k ≤ m− 1

f (m)(r) 6= 0

Remark 7.2 (ill-conditioned problem). Solving f(r) = 0 with a multiple root r is
known as an ill-conditioned problem. This means that small changes to inputs lead
to large changes in outputs.

In our problem, the input is the RHS of f(r) = δ and the output is the solution
rδ. In other words, when solving f(rδ) = δ, we compute

rδ = f−1(δ).

Notice that from a simple Taylor expansion, we have

rδ − r = f−1(δ)− f−1(0) ≈ δ
df−1

dx
(0) = δ (f ′(r))−1.

If r is a multiple root, then (f ′(r))−1 is undefined. Hence, perturbing our problem
with δ leads to a big change in the root.
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δ1

rδ1

x

y

Also, bisection can sometimes struggle with ill-conditioned problems when there is
floating point error.

8 Secant Method (September 12, 2025)

In this lecture, we’ll cover the secant method, which is closely related of Newton.
The main idea is to replace f ′(xn) with

Dnf(xn) =
f(xn)− f(xn−1)

xn − xn−1
≈ f ′(xn).

The advantage of this method is we no longer need to compute the derivative f ′ but
rather just compute f .

x

y

rx2 x1 x0

f

Figure 6: Secant method replaces the tangent line (red) with the secant line of the
previous iterates to compute the next guess.

The above approximation is a good one because as xn−1 → xn, we have that
f(xn)−f(xn−1)

xn−xn−1
→ f ′(xn).
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Like Newton, the secant iteration becomes

xn+1 = xn −
(

xn − xn−1
f (xn)− f (xn−1)

)
f (xn) = xn −

f (xn)

Dnf(xn)
.

Is this a good method? We’ll see that it can be a good method when we do an error
analysis.

8.1 Error Analysis of Secant

In this section, we’ll prove the following proposition.

Proposition 8.1 (error inequality for secant). Let r be a root of f and suppose
f ′(r) 6= 0. Let en = xn − r, where xn is generated from running the secant method.
Suppose |en| < δ, |en−1| < δ for δ sufficiently small. The error satisfies

|en+1| ≤
max|x−r|≤δ |f ′′(x)|
min|x−r|≤δ |f ′(x)|

(
1

2
|en| |en−1|+ |en|2

)
.

Proof. We proceed as in the first two steps for Newton.
Step 1: (error equation) This procedure is the same for Newton. Recall the secant
iteration

xn+1 = xn −
(

xn − xn−1
f (xn)− f (xn−1)

)
f (xn) = xn −

f (xn)

Dnf(xn)
.

Subtracting r from both sides and combining like fractions yields

en+1 =
Dnf(xn)en − f(xn)

Dnf(xn)
.

Step 2: (Taylor expansions) Here, we’d like to do a Taylor expansion like Newton.
However, we no longer have the derivative. Here, we’ll just add and subtract f ′(xn)en:

en+1 =
f ′(xn)en − f(xn)

Dnf(xn)
+
Dnf(xn)− f ′(xn)

Dnf(xn)
en

= I + II

Notice from our proof of Newton convergence, we had that there is a cn in between
xn and r such that

f ′(xn)en − f(xn) =
1

2
f ′′(cn)e2n.
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Also, Mean Value Theorem tells us there is a an such that

Dnf(xn) = f ′(an).

Hence, the first term I reads

I =
f ′′(cn)

2f ′(an)
e2n

and the second term now reads

II =
Dnf(xn)− f ′(xn)

f ′(an)
en.

If we stopped here, we’d have a linear convergence result (see HW 2). However, we
can do better. If I center a Taylor expansion at xn−1, I have

f(xn−1) = f(xn)− f ′(xn)(xn − xn−1) +
1

2
f ′′(bn)(xn − xn−1)2

for some bn in between xn−1 and xn. Hence

Dnf(xn) =
f(xn)− f(xn−1)

xn − xn−1
= f ′(xn)− 1

2
f ′′(bn)(xn − xn−1)

and

II =
Dnf(xn)− f ′(xn)

f ′(an)
en =

1

2f ′(an)
f ′′(bn)(xn−xn−1)en =

1

2f ′(an)
f ′′(bn)(en−en−1)en.

Combining everything together yields

en+1 =
f ′′(cn) + f ′′(bn)

2f ′(an)
e2n −

1

2
f ′′(bn)en−1en.

We can then take absolute value and repeat the same upper bound procedure as with
Newton.

Say that we have that |en| ≤ |en−1|, then the error satisfies

|en+1| ≤ c|en||en−1|

for some constant c. If this is the case, then we’ll actually have super linear conver-
gence

|en+1| ≤ C|en|α, α =
1

2
(1 +

√
5)

We’ll now summarize the convergence of secant in the following result
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Theorem 8.1 (superlinear convergence of secant). Let r be a root of f . Suppose
f has two continuous derivatives and f ′(r) 6= 0. Then there there is a constant
δ > 0 and C > 0 such that if |x0 − r| < δ, we have that xn → r and secant method
converges superlinearly

|en+1| ≤ C|en|α, α =
1

2
(1 +

√
5)

Remark 8.1 (quasi Newton methods). Secant method is known as a quasi Newton
method.

• quasi Newton methods replace f ′(xn) with an approximation that is based on
previous iterates

• Often these methods still retain desirable convergence properties like super linear
convergence as seen in the example below.
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Figure 7: Convergence behavior of secant behavior for a well conditioned problem
sinx = f(x) (left) and a ill-conditioned problem x3 = f(x) (right). We see that
for well conditioned problems, secant converges super linearly. For ill-conditioned
problems, secant suffers similarly to Newton method.

9 Fixed Point Iteration (September 15, 2025)

The last root finding method we’ll consider is fixed point iteration (FPI). The goal
of FPI is to find a fixed point, r, of g. In math terms, we want to solve for r such
that

g(r) = r

If we want to solve f(x) = 0, we could write

g(x) = f(x) + x
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and then solve for a fixed point of g. We’ll see that there are many (both good and
bad) ways of rewriting a root finding problem into a fixed point problem.

To solve the problem g(x) = x, the iteration is simple. Given xn, we compute

xn+1 = g(xn).

FPI is a wonderfully simple method. Pictorally, what is happening is below
The reason FPI works is that around a fixed point r the behavior of the error is

en+1 = xn+1 − r = g(xn)− g(r) ≈ g′(r)en.

Hence, the error is approximately multiplied by g′(r) every step and we might expect
that en → 0 if

|g′(r)| < 1,

which means g is known as a contraction mapping. We can actually write a similar
theorem for FPI as we have for Newton and Secant.

Theorem 9.1 (local convergence of fixed point iteration). Let g be continuous dif-
ferentiable and suppose that xn is given by a fixed point iteration. Also suppose r is
a fixed point (g(r) = r) with |g′(r)| < 1. There is a δ > 0 such that if |x0 − r| < δ,
we have that en → 0 and

|en+1| ≤
(

max
|x−r|≤δ

|g′(x)|
)
|en|.

We’ll leave the proof as an exercise.

Exercise 9.1. Prove the above theorem.
Hint: You’ll want the following Taylor expansion

g(x) = g(r) + g′(c)(x− r)

for some c in between x and r.

Remark 9.1. We note the following convergence properties of FPI.

• The convergence of FPI is linear.

• The convergence will be faster than bisection if |g′(r)| < 1
2

and will be slower than
bisection if |g′(r)| > 1

2
.

We now go over how to use FPI for a root finding problem.
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Example 9.1 (FPI applied to square roots). We want to compute
√
R for some

R > 0. We’ll do this be solving the root finding problem

f(x) = x2 −R = 0.

• Our first attempt to get a g(x) to apply a fixed point iteration will be to divide
both sides by x:

x2 −R = 0

x− R

x
= 0

g(x) =
R

x
= x,

so our g is g(x) = R/x. Checking the derivative g′(x) = −R/x2 at
√
R gives

|g′(
√
R)| =

∣∣∣∣∣ R

(
√
R)2

∣∣∣∣∣ = 1,

so FPI applied to g will not necessarily converge to
√
R.

• Our second attempt to get a g(x) to apply a fixed point iteration will be to subtract
x from both sides:

x2 −R = 0

x2 − x−R = −x
g(x) = −

(
x2 − x−R

)
= x,

so our g is g(x) = −
(
x2 − x−R

)
. Checking the derivative g′(x) = 1− 2x at

√
R

gives

|g′(
√
R)| =

∣∣∣1− 2
√
R
∣∣∣ ,

so FPI applied to g will converge for 0 ≤
√
R < 1.
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Figure 8: Error, |en| of FPI vs n for different values of R in the above example. Note
that g′(

√
R) = 0 for R = 1/4, and we observe quadratic instead of linear convergence.

Note that in the above example, we have g′(
√
R) = 0 for R = 1/4 and we see

superlinear convergence for R = 1/4. Below is an exercise to prove it

Exercise 9.2. Let g be twice continuous differentiable. Suppose g(r) = r and
g′(r) = 0. Show that FPI is locally quadratically convergent, i.e. show that there is
a δ > 0 such that if |x0 − r| < δ, then en → 0 and there is a C > 0 such that

|en+1| ≤ Ce2n

9.1 Systems of Nonlinear Equations

FPI is a good example of a method that generalizes well to systems of nonlinear
equations. If we want to solve for a fixed point of the vector valued function g :
Rd → Rd:

g(x) = x,

then our iteration is
x(n+1) = g

(
x(n)

)
.

Here, the notation x(n) means the nth iteration and does not mean a power of
something. This is because I denote subscripts as the components of a vector

x = (x1, x2, · · · , xd)

38



9.1.1 Newton’s method for systems of nonlinear equations

Newton’s method also generalizes to higher dimensions. Here, I present the method
using the 1D method as an analogy.

Newton in 1D

• Problem Solve f(x) = 0.

• Derivative of f at x is f ′(x)

• Reciprocal of f ′(x) is 1/f ′(x)

• Newton iteration is

xn+1 = xn −
f(xn)

f ′(xn)

Newton in Multi-D

• Problem Solve f(x) = 0.

• Jacobian of f at x is Jf(x)

• Inverse of Jf(x)is
(
Jf(x)

)−1
• Newton iteration is

x(n+1) = x(n)−
(

Jf
(
x(n)

))−1
f(x(n))

Recall that the Jacobian of a function f : Rd → Rd is a matrix valued function
Jf : Rd → Rd×d given by

Jf
(
x(n)

)
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

· · ·
...


or in component form is

Jf
(
x(n)

)
ij

=
∂fi
∂xj

.

The −1 power in Newton iteration denotes matrix inverse. For large systems of

equations, we don’t compute the inverse matrix
(
Jf(x)

)−1
directly. Rather, the

Newton iteration is

Solve linear system for d :

(
Jf
(
x(n)

))
d = −f(x(n))

Compute x(n+1) : x(n+1) = x(n) + d.

This motivates the study of solving systems of linear equations like in the solve step
above. Next lecture looks at solving

Ax = b
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10 Gaussian Elimination (September 17, 2025)

The goal of this lecture is the solve the system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1
...

an1x1 + an2x2 + · · ·+ annxn = bn

We can write this in matrix vector form as

Ax = b, x,b in Rn, A in Rn×n.

We start with a simple example

Example 10.1. Say I want to solve

x1 + x2 = 1

x1 − x2 = 0

We’ll multiply the first 1st equation by 1 and subtract it from the second equation
to get

x1 + x2 = 1

−2x2 = −1
.

We can now solve for x2

x2 =
−1

−2
=

1

2
,

and also solve for x1

x1 = 1− x2 =
1

2
.

The point of this example is that this procedure of eliminating variables in equa-
tions can be generalized.

10.1 Special case: upper triangular matrix

Say I have a linear system to solve of the form

Ux = b
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where

U =


• • • • •
0 • • • •
0 0 • • •
0 0 0 • •
0 0 0 0 •


is an upper triangular matrix. Here, the dots • signify that the entry is likely nonzero.
The system of equations looks like

u11x1 + u12x2 + · · ·+ u1nxn = b1

u22x2 + · · ·+ u2nxn = b2
...

un−1,n−1xn−1 + un−1,nxn = bn−1

unnxn = bn

To solve for x, we first can easily solve for xn

xn = bn/unn.

Once we know xn we can then solve for xn−1:

xn−1 =
(
bn−1 − un−1,nxn

) 1

un−1,n−1
.

Continuing the pattern, we have

xj =

bj − n∑
i=j+1

uj,ixi

 1

ujj

and we have the following algorithm known as back substitution. This was the second
step from our example.

Input: Upper triangular matrix U, right-hand side vector b
Output: Solution vector x

xn ← bn/unn;
for j ← n− 1 to 1 do

xj ← 1
ujj

(
bj −

∑n
i=j+1 uj,ixi

)
;

end
Algorithm 2: Back Substitution version 1
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We can actually do slightly better by saving memory and writing the sum as a
for loop to get the back substition algorithm below.

Input: Lower triangular matrix U, right-hand side vector b
Output: Solution vector x

xn ← bn/unn;
for j ← n− 1 to 1 do

s← 0 for i← j + 1 to n do
s← s+ uj,ixi

end

xj ← 1
ujj

(
bj − s

)
;

end
Algorithm 3: Back Substitution version 2 (more efficient)

10.2 Elimination step

In order to get the algorithm into the form that we need to apply back substitution,
we need to do the elimination of variables that we did in the first step of the example.
This is known as naive Gaussian elimination. The goal is to get the set of equations
into an upper triangular form. Say we have the following structure of the matrix
after eliminating the zeros below the diagonal for the first few columns

• • • • • · · ·
0 • • • • · · ·
0 0 ajj • • · · ·
0 0 0 • • · · ·
0 0 aij • • · · ·
0 0 • • • · · ·
0 0 • • • · · ·
...

...
...

...
... · · ·


The goal here is to eliminate aij value to get 0 and also eliminate all other entries
below the diagonal entry ajj. In order to do this, we follow our example, and we
need to find a multiplier p so that

aij − pajj = 0.

Solving for p gives p = aij/ajj. We then use this quantity to subtract p times the
jth row from the ith row.

aik ← aik − pajk,
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which results the following naive Gaussian elimination algorithm
Input: Matrix A
Output: Overwrites A into upper triangular form from Gaussian elimination

for j ← 1 to n− 1 (loops over columns for elimination) do
for i← j + 1 to n (loops over rows below diagonal) do

p← aij/ajj;
for i← j + 1 to n (loop over ith row) do

aik ← aik − pajk
end

end

end
Algorithm 4: Gaussian elimination

Recall from the example that we also modified b to solve the problem. To modify
the Gaussian elimination algorithm to incorporate b, we just need to add one line
to modify b and the back substitution step.

Input: Matrix A, right hand side vector b
Output: Solution x to problem Ax = b

for j ← 1 to n− 1 (loops over columns for elimination) do
for i← j + 1 to n (loops over rows below diagonal) do

p← aij/ajj;
bj ← bj − pbi;
for i← j + 1 to n (loop over ith row) do

aik ← aik − pajk;
end

end

end
x← back-substitution(A,b);

Algorithm 5: Gaussian elimination with back substitution to solve Ax = b

10.3 Operation count of Gaussian elimination

How many operations does Gaussian elimination (Algorithm 4) take? We count this
in terms of Floating Point Operations (FLOPS). This because the FLOPS are what
dominate the cost of the algorithm. We go with the inner most loop and work our
way out.

• Computing aik ← aik − pajk takes 2 FLOPS.

• The above computation is repeated n− j+ 1 times and then we add 1 FLOP from
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p← aij/ajj. Hence,

cost of inside of i loop = 2(n− j + 1) + 1 FLOPS

• The ith loop goes from i = j+1, . . . , n, so the above computation is repeated n−j
times. The inner portion of the j loop costs

cost of inside of j loop = (n− j)(2(n− j + 1) + 1) FLOPS

• Finally, we have the loop from j = 1, . . . , n− 1, so the total cost of the algorithm
is

total cost =
n−1∑
j=1

(n− j)(2(n− j + 1) + 1)

=
n−1∑
j=1

j(2(j + 1) + 1) =
n−1∑
j=1

(2j2 + 3j)

=
2(n− 1)n(2n− 1)

6
+

3(n− 1)n

2

=
2

3
n3 +

1

2
n2 − 7

6
n

Notice that the leading order term will dominate the cost of the computation, so we
can drop the n2 and n terms. Thus,

total cost ≈ 2

3
n3 = O(n3) FLOPS.

The notation O(n3) is a way to say that the cost grows like Cn3 for some constant
C. We say that the cost is big-O of n3 since the algorithm grows like n3 as n→∞.
This means that if we double the size of our matrix, then Gaussian elimination takes
8x more FLOPS.

Exercise 10.1 (operation count of back substitution). Check that

cost of back substitution ≈ O(n2) FLOPS.
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10.3.1 Reading log-log plots

Often in order to check the computational cost of an algorithm, we time how long it
takes for the algorithm to run for different problem sizes. Suppose that the algorithm
costs

cost = Cn3

for some C > 0. Taking the log of both sides, we have

log(cost) = logC + 3 log n,

so if we plot log(cost) vs log n, we expect a straight line of slope 3. Similarly, if

cost = O(np)

for some power p, we can expect

log(cost) ≈ p log n,

and we can expect that a plot of log(cost) vs log n, we shows a straight line of slope
p. Below is such a plot for Gaussian elimination (Algorithm 5).
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Figure 9: Time to run Algorithm 5 vs n on log-log scale. Notice that the cost follows
a straight line of slope 3, which is predicted by our operation counting.
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11 LU factorization and Floating Point (Septem-

ber 19, 2025)

We begin lecture by applying the naive Gaussian elimination algorithm from last
time to the matrix

A =

1 2 2
1 4 5
3 2 1


First step is multiply row 1 by 1 and subtract. Notice that this can be written as a
matrix multiplication  1 2 2

0 2 3
3 2 1

 =

 1 0 0
−1 1 0
0 0 1

A

The second step is to multiply row 1 by 3 and subtract, we again can write this as
a matrix multiplication 1 2 2

0 2 3
0 −4 −5

 =

 1 0 0
0 1 0
−3 0 1


 1 0 0
−1 1 0
0 0 1

A

Finally, the third step is to multiply row 2 by −2 and subtract, which yields the
following equation 1 2 2

0 2 3
0 0 1


︸ ︷︷ ︸

=:U

=

 1 0 0
0 1 0
0 2 1


 1 0 0

0 1 0
−3 0 1


 1 0 0
−1 1 0
0 0 1

A

=

 1 0 0
0 1 0
−3 2 1


 1 0 0
−1 1 0
0 0 1

A

=

 1 0 0
−1 1 0
−5 2 1

A
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Notice that the matrix multiplying A is a lower triangular matrix:

L−1 =

 1 0 0
−1 1 0
−5 2 1


where

L =

 1 0 0
1 1 0
3 −2 1


Hence, we have a factorization of A of

LU = A

where L is lower triangular and U is upper triangular. Notice that the lower triangu-
lar entries of L are the multipliers from Gaussian elimination. Hence, the Gaussian
elimination algorithm provides a factorization of the matrix A. Below is the algo-
rithm for LU factorization.

Input: Matrix A
Output: Returns triangular matrices L,U such that LU = A.

Initialize L← I;
for j ← 1 to n− 1 (loops over columns for elimination) do

for i← j + 1 to n (loops over rows below diagonal) do
lij ← aij/ajj;
for i← j + 1 to n (loop over ith row) do

aik ← aik − pajk
end

end

end
U← A;
return (L,U);

Algorithm 6: LU factorization algorithm.

11.1 Computational Cost Advantage of LU Factorization

Suppose I want to solve the problem

LUx = b,
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where L,U are lower and upper triangular matrices. If we multiply A = LU and
solve using Gaussian elimination we have an O(n3) algorithm. However, we can
actually solve by

• Solve Lz = b using forward substitution

• Solve Ux = b using backward substitution

Here, forward substitution is just the cousin of backward substitution for lower tri-
angular matrices. Both algorithms are cost O(n2). Hence, solving this way can be
much cheaper if we have the factorization. I leave deriving a forward substitution
algorithm as an exercise.

Exercise 11.1 (forward substitution). Derive a forward substitution algorithm to
solve

Lz = b

where L is a lower triangular matrix. Show that your algorithm costs O(n2) FLOPs.

The advantage of LU factorization comes in when we want to solve

Ax(i) = b(i), i = 1, . . . ,m

where m is a large number. This kind of problem comes up in numerically solving
differential equations. If we perform Gaussian elimination for each i, our algorithm
would cost O(mn3) FLOPs. If we first perform A = LU and solve using the LU
factorization, this algorithm would cost O(n3 + mn2) FLOPs. This can make a big
difference when m is large like simulating a differential equation for a long time.

11.2 Floating Point Error on Gaussian Elimination

We have so far ignored floating point error in Gaussian elimination. It can be a big
issue! We’ll see this in an example.

Example 11.1 (naive Gaussian elimination and floating point error). Consider the
problem [

ε 1
1 1

][
x1
x2

]
=

[
1
2

]
Notice that Gaussian elimination would have to divide by 0 if ε = 0. We’ll see that
there is an issue when ε is small. We first do our Gaussian elimination step[

ε 1
0 1− 1

ε

][
x1
x2

]
=

[
1
2− 1

ε

]
.
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We now apply back substitution to get x2 and x1

x2 =
2− 1

ε

1− 1
ε

, x1 =
1− x2
ε

Notice that x2 → 1 as ε→ 0. Hence if ε is small, computing x1 involves subtracting
two nearly equal numbers and we have a catastrophic cancelation. To add insult to
injury, we divide by ε and amplify the floating point error!

We can fix this example by swapping rows

Example 11.2 (swapping rows avoids bad floating point errors). We now swap rows[
1 1
ε 1

][
x1
x2

]
=

[
2
1

]
and do the first step of Gaussian elimination[

1 1
0 1− ε

][
x1
x2

]
=

[
2

1− 2ε

]
.

When we do back substitution, we get

x2 =
1− 2ε

1− ε , x1 = 2− x2.

Notice that we avoid catastrophic cancelation and are no longer dividing by ε.

This solution of swapping rows is known as partial pivoting. We’ll discuss in
more detail next lecture.

12 Partial Pivoting (September 22, 2025)

Recall from last time that in order to solve[
ε 1
1 1

][
x1
x2

]
=

[
1
2

]
and avoid additional error from floating point rounding errors, we swapped rows and
then solved [

1 1
ε 1

][
x1
x2

]
=

[
2
1

]
.
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This technique of swapping rows is known as partial pivoting. One question is how
do we know which row to swap? Recall that we want to avoid dividing by small
numbers. What we pick is the row with the largest absolute value as our pivot value,
which leads to the algorithm below.

Input: Matrix A, right hand side vector b
Output: Solution x to problem Ax = b

for j ← 1 to n− 1 (loops over columns for elimination) do
j∗ ← argmaxi≥j|aij|;
swap-rows(aj,:, aj∗,:);
swap(bj, bj∗);
for i← j + 1 to n (loops over rows below diagonal) do

p← aij/ajj;
bj ← bj − pbi;
for i← j + 1 to n (loop over ith row) do

aik ← aik − pajk;
end

end

end
x← back-substitution(A,b);

Algorithm 7: Gaussian elimination with partial pivoting with back substitution
to solve Ax = b

A few notes about the algorithm are in order.

• The notation argmaxi≥j|aij|means to find the index that corresponds to the largest
value of |aij| for i ≥ j. This is finding the largest term that we can use to pivot
off of.

• aj,: is denoting the whole jth row of A.

• swap-rows means to swap the two rows in memory, likewise for swap.

12.1 Partial Pivoting and LU Factorization

Since LU factorization provides a convenient way to resolve Ax = b if a new b
arises, a natural question is how does partial pivoting impact the factorization? We
first go back to our example of

A =

[
ε 1
1 1

]
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Swapping rows can be written as[
1 1
ε 1

]
=

[
0 1
1 0

]
︸ ︷︷ ︸

P1

A.

where P1 is a permutation matrix. Applying an elimination step is the same as
multiplying by a lower triangular matrix L−11 :[

1 1
0 1− ε

]
=

[
1 0
−ε 0

]
︸ ︷︷ ︸
=L−1

1 =L−1

P1A.

We are then left with the factorization

PA = LU

In general, if A were an n× n matrix, the above procedure we outlined would result
in

U = L−1n−1Pn−1 · · ·L−12 P2L
−1
1 P1A

for lower triangular matrices Li and permutation matrices Pi. It takes a lot of more
work, but one can show that there is a permutation matrix P and triangular matrices
L,U such that

PA = LU,

and we again have a way to cheaply solve Ax = b once we have factorized.

12.2 Partial Pivoting and Floating Point Error

The original motivation for partial pivoting was to avoid unnecessary amplification
of floating point error. We now address whether it holds in general.

Before we get into partial pivoting, we go over an important concept in linear
algebra called condition number. Let us suppose that we have a solution x to

Ax = b.

Suppose x̂ is our numerical approximation to x and it satisfies

Ax̂ = b̂.
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Another way to view the above equation is that b̂ is b plus additional errors due to
floating point, measurement noise, etc. We now look at the ratio between

relative forward error =
‖x− x̂‖
‖x‖

and

relative backward error =
‖b− b̂‖
‖b‖ .

Here, we are using the double bar notation to mean the typical length of a vector:

‖x‖ =

√√√√ n∑
i=1

x2i .

This ratio of forward and backward errors can be viewed as how errors in b get
amplified by solving Ax = b. We have

relative forward error

relative backward error
=

‖x−x̂‖
‖x‖
‖b−b̂‖
‖b‖

=
‖x− x̂‖ ‖b‖
‖x‖ ‖b− b̂‖

In the numerator, we write x = A−1b, x̂ = A−1b̂, and b = Ax to get

relative forward error

relative backward error
=
‖A−1(b− b̂)‖ ‖Ax‖
‖b− b̂‖ ‖x‖

≤
(

max
z 6=0

‖A−1z‖
‖z‖

)(
max
z 6=0

‖Az‖
‖z‖

)
=‖A−1‖ ‖A‖

In the above calculation, I used an object called a matrix norm. I define it below.

Definition 12.1 (matrix norm). Let ‖ · ‖ be some vector norm. The corresponding
matrix norm is

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

Remark 12.1 (singular value). For the case of the standard vector norm ‖x‖ =√∑n
i=1 x

2
i , we have that ‖A‖ = σmax(A), where σmax denotes the largest singular

value.

What we have so far is

relative forward error

relative backward error
≤ ‖A−1‖ ‖A‖,

so ‖A−1‖ ‖A‖ is the maximum relative error amplification factor that could come
from solving Ax = b. This quantity is called the condition number of a matrix.
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Definition 12.2 (condition number of a matrix). Let ‖ · ‖ be a vector norm. We
say that

κ(A) = ‖A‖‖A−1‖
is the condition number of A with respect to the vector norm ‖ · ‖.

Remark 12.2 (condition number in terms of singular values). For the case of the
standard vector norm ‖x‖ =

√∑n
i=1 x

2
i , we have that the condition number of a

matrix A is

κ(A) =
σmax(A)

σmin(A)

where σmax, σmin are the largest and smallest singular values of A.

Our above computations show that

relative forward error

relative backward error
≤ κ(A).

We now discuss a few consequences of this fact.

Remark 12.3 (condition number and floating point). The condition number tells
us the best an algorithm could possibly do when solving Ax = b. In the presence of
floating point and rounding b to b̂, we have

‖b− b̂‖
‖b‖ ≤ ε

2

where ε is machine ε. If our algorithm solved Ax̂ = b̂ exactly, we still would expect

‖x̂− x‖
‖x‖ ≤ κ(A)

ε

2
,

so the condition number is a limit on how well our algorithm can do in the presence
of floating point.

The next theorem says that Gaussian elimination with partial pivoting achieves
this theoretical best for most matrices.

Theorem 12.1 (partial pivoting and floating point). Gaussian elimination with
partial pivoting achieves this theoretical best for most matrices in the following
sense.
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• Gaussian elimination with partial pivoting makes the relative backward error small
for most matrices.

• Consequently, for most matrices and in the presence of rounding A,b to machine
precision, Gaussian elimination with partial pivoting computes an approximate
solution x̂ with

number of correct digits = | log ε| − κ(A)

where ε is machine ε.

Remark 12.4 (ill-conditioned matrices). We say a matrix A is ill-conditioned if
κ(A) is large. For instance, if κ(A) ≈ 10d, we then expect to lose d digits of precision.
Also, κ(A) is a measure of how close a matrix is to singular or not invertible. As
κ(A)→∞, the matrix A becomes harder to invert.

13 Symmetric Positive Definite Matrices and Cholesky

Factorization (September 24, 2025)

Today we look at a special class of matrices called symmetric positive definite ma-
trices (SPD) and a useful factorization.

Definition 13.1 (symmetric positive definite matrix). A matrix A is symmetric
positive definite (SPD) if it satisfies

• symmetry A = AT

• positive definiteness x ·Ax > 0 for all x 6= 0.

Recall that any symmetric matrix has real eigenvalues. For SPD matrices, we
know that the eigenvalues are positive.

Proposition 13.1. Let A = AT . A is SPD if and only if every eigenvalue of A
satisfies λ > 0.

The eigenvalues can be very useful. Recall the vector and matrix norm from last
time.

‖x‖2 =

√√√√ n∑
i=1

x2i , ‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2
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which is a specific case of a more general vector norm the so-called p-norm:

‖x‖p =

{(∑n
i=1 |xi|p

)1/p
, 1 ≤ p <∞

max1≤i≤n |xi|, p =∞
.

For SPD matrices, we have specific characterizations of the matrix norm and condi-
tion number.

Proposition 13.2. Let A be an SPD matrix. Then

• the matrix norm satisfies

‖A‖2 = λmax(A) = maximum eigenvalue of A

• and the condition number is

κ2(A) = ‖A‖2‖A−1‖2 =
λmax(A)

λmin(A)
.

Proof. Left as an exercise but here is a hint. Recall that any symmetric matrix can
be diagonalized as

A = QTΛQ

where
QTQ = QQT = I.

In other words, the eigenvectors of A or orthogonal (v(i) · v(j) = 0 for eigenvectors
v(i),v(j) and i 6= j.)

13.1 Cholesky Factorization

Just like A = LU, we can decompose an SPD matrix as

A = LLT

which is similar to the LU factorization. This factorization uses the symmetry of
the matrix and allows us to save memory.

Let’s first consider a 2× 2 example

A =

[
a b
b c

]

55



We know that (
1

0

)
·A
(

1

0

)
= a > 0

and
ac− b2 = det A = λ1 · λ2 > 0

since A is SPD. To compute the factorization, we’d like to write

A =

[
l11 0
l21 l22

][
l11 l21
0 l22

]
=

[
l211 l11l21
l11l21 l221 + l222

]
Solving for L, we have

l211 = a =⇒ l11 =
√
a,

b = l11l21 =⇒ l21 = b/
√
a,

l221 + l222 = c =⇒ l22 =
√
c− b2/a.

all of these are well defined because A is SPD. At least for 2× 2 SPD matrices, we
have A = LLT .

What about for n× n matrices? Let

A =

[
a11 bT

b C

]
and

L =

[
l11 0

v L̃

]
We now compute LLT :

A = LLT

=

[
l11 0T

v L̃

][
l11 vT

0 L̃T

]
=

[
l211 l11v

T

l11v vvT + L̃L̃T

]
This multiplication gives us the following system of equations:

a11 = l211, b = l11v

C = vvT + L̃L̃T
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and we solve as

l11 =
√
a11, v = b/

√
a11

L̃L̃T = C− vvT

We have solve for everything except the lower triangular (n− 1)× (n− 1) matrix L̃.
We leave it as an exercise to check that C− vvT is SPD. Once we know the RHS is
SPD, we can actually recursively call Cholesky and compute

L̃ = cholesky
(
C− vvT

)
where cholesky is the cholesky algorithm we are trying to develop. This argument
then leads to the following recursive algorithm for Cholesky factorization. Here’s an
algorithm for Cholesky factorization using induction:

Input: Symmetric positive definite matrix A ∈ Rn×n

Output: Lower triangular matrix L such that A = LLT

if n = 2 then
l11 ←

√
a11;

l21 ← a21/
√
a11;

l22 ←
√
a22 − a221

a11
;

return L;

end
else

l11 ←
√
a11;

l2:n,1 ← a2:n,1/
√
a11;

l2:n,2:n ← cholesky
(
a2:n,2:n − l2:n,1lT2:n,1

)
;

return L;

end
Algorithm 8: Cholesky Factorization (Recursive)

The notation l2:n,2:n denotes the submatrix of L that is (i, j) both ranging from
2 to n. The notation l2:n,1 denotes the column vector of L in the first column and
rows 2 to n.

This algorithm uses the recursive formulation we derived earlier. It breaks down
the problem into smaller subproblems, solving them recursively. The base case is
when the matrix is 2×2, in which case we apply the direct solution we found earlier.
This algorithm will become very inefficient for large matrices. Depending on the
programming language, the recursive call might make copies of the matrix and we
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could see an explosion of memory usage. We leave it as an exercise to write an
algorithm that does not use recursion. Here’s an exercise for students to write a
non-recursive Cholesky algorithm:

Exercise 13.1 (non-recursive Cholesky factorization). Develop a non-recursive al-
gorithm for Cholesky factorization of an SPD matrix A by adapting Algorithm 8
and writing it with nested loops instead.

Hint: Loop from i = 1, . . . n and apply the first two lines of the else block before
the recursuve call. Then overwrite the bottom portion of A with what is inside the
cholesky function call in the third line of the else block.

14 Introduction to Iterative Methods for Linear

Algebra (September 26, 2025)

We now drop the approach of directly computing x so that Ax = b and now try to
produce a sequence x(k) st x(k) → x as k → ∞. Our first method is called Jacobi
iteration.

14.1 Jacobi Iteration

If we have Ax = b, then
n∑
j=1

aijxj = bi.

If we now isolate xi, we have

aiixi +
n∑
j=1
j 6=i

aijxj = bi.

Rearranging and dividing by aii yields

xi =

bi − n∑
j=1
j 6=i

aijxj

 a−1ii

︸ ︷︷ ︸
=:g(x)i

.
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We now have a fixed point problem x = g(x). The Jacobi iteration is the fixed point
iteration x(k+1) = g(x(k)). More specifically, the Jacobi iteration is

x
(k+1)
i =

bi − n∑
j=1
j 6=i

aijx
(k)
j

 a−1ii .

Input: Matrix A, right hand side vector b, residual tolerance rtol,
maximum iterations maxiter

Output: Approximate solution x to problem Ax = b

Initialize x(0) (e.g., with zeros or a guess);
k ← 0;
while k < maxiter and ‖Ax(k) − b‖/‖b‖ > rtol do

for i← 1 to n do
(Loops over components of x);
s← 0;
(Computes sum);
for j ← 1 to n, j 6= i do

s← s+ aijx
(k)
j ;

end

x
(k+1)
i ← (bi − s)/aii;

end
k ← k + 1;

end

x← x(k);
Algorithm 9: Jacobi iteration to solve Ax = b

Remark 14.1 (matrix notation for Jacobi). We set D to be the diagonal, U,L to
be the upper and lower triangular portions of A, i.e.

A =


. . . U

D

L
. . .


The Jacobi iteration then reads

x(k+1) = D−1(b− (L + U)x(k))

This form of Jacobi will be useful for the convergence analysis, while the indexed
form above is more useful for computation.
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Remark 14.2 (parallelization of Jacobi). Note that the computation of x
(k+1)
i only

depends on A,b and x(k). The computation doesn’t require knowledge of the other
x
(k+1)
j . One advantage of this is it is easy to compute each x

(k+1)
i as separate processes

and parallelize the Jacobi iteration.

14.2 Gauss Seidel Iteration

Notice that as we loop i = 1, . . . , n, we have in Jacobi

x
(k+1)
i =

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j

 a−1ii .

In the sum
∑i−1

j=1 aijx
(k)
j can be replaced with the already computed values x

(k+1)
j .

Hence, we might be able to speed up the method by using these values and compute

x
(k+1)
i =

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 a−1ii .

This new method is called Gauss Seidel iteration. Here’s an algorithm for Gauss-
Seidel iteration, following the structure of the previous Jacobi algorithm:

Input: Matrix A, right hand side vector b, residual tolerance rtol,
maximum iterations maxiter

Output: Approximate solution x to problem Ax = b

Initialize x(0) (e.g., with zeros or a guess);
k ← 0;
while k < maxiter and ‖Ax(k) − b‖/‖b‖ > rtol do

for i← 1 to n do
s← 0; for j ← 1 to n do

s← s+ aijxj;
end
xi ← (bi − s)/aii;

end
k ← k + 1;

end

x← x(k);
Algorithm 10: Gauss-Seidel iteration to solve Ax = b

Remark 14.3 (programming Gauss Seidel and Jacobi). Notice that we can just
store one vector x in the above algorithm and the code overwrites x as it loops over
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i. For Jacobi, we needed to have a copy of x in order to not overwrite it. I have made
the mistake of programming Gauss Seidel when I meant to write Jacobi because of
this subtle difference.

Exercise 14.1 (matrix notation for Gauss-Seidel). Using the same notation as before
with D, L, and U, i.e.

A =


. . . U

D

L
. . .

 ,

show that the Gauss-Seidel iteration can be written as:

x(k+1) = (D + L)−1(b−Ux(k))

Remark 14.4 (comparison with Jacobi on parallelization). Unlike Jacobi iteration,

Gauss-Seidel uses the most recent values of x
(k+1)
j as soon as they are available. This

often leads to faster convergence, but it also makes the method inherently sequential
and harder to parallelize compared to Jacobi iteration.

14.3 Other methods

We list two other methods but will not go over them in much detail. They are Here
are the matrix forms for Successive Over Relaxation (SOR) and Richardson iteration:

14.3.1 Successive Over Relaxation (SOR)

The SOR method is a modification of the Gauss-Seidel method with an additional
relaxation parameter ω. In matrix form, it can be written as:

x(k+1) = (D + ωL)−1(ωb− (ωU + (ω − 1)D)x(k))

where 0 < ω < 2 is the relaxation parameter. When ω = 1, SOR reduces to the
Gauss-Seidel method.

14.3.2 Richardson Iteration

The Richardson iteration is one of the simplest iterative methods. In matrix form,
it can be expressed as:

x(k+1) = x(k) + ω(b−Ax(k)) = (I− ωA)x(k) + ωb

where ω > 0 is a damping parameter. The term b−Ax(k) is the residual at step
k.
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14.4 Convergence of iterative methods

Notice that all of these methods are of the form

x(k+1) = g(x(k)) = G1x
(k) + G2b

for some iteration matrices G1,G2. We can think of each method as a fixed point
iteration.

When does FPI converge? We saw from the HW that FPI converges if there is a
ρ < 1 such that for all x,y, we have

‖g(x)− g(y)‖ ≤ ρ‖x− y‖
For our iteration, we have

g(x)− g(y) = G1(x− y),

so we want
‖G1(x− y)‖
‖x− y‖ ≤ ρ < 1

for all x 6= y. Setting z = x− y, the above condition is equivalent to

max
z 6=0

‖G1z‖
‖z‖ ≤ ρ < 1

Recall that the LHS above is a matrix norm and our discussion could have been
for any norm we put on vectors. We now state an important definition and two
important results.

Definition 14.1 (spectral radius). The spectral radius of a matrix A, denoted ρ(A),
is defined as

ρ(A) = max{|λ| : λ is an eigenvalue of A}.
Note that in the above definition, the eigenvalues of A can be complex numbers.

Lemma 14.1. If ρ(A) < 1, then there exists a matrix norm ‖ · ‖ such that ‖A‖ < 1.

Below is the main convergence theorem that we need to study Jacobi, Gauss
Seidel, Successive Over Relaxation, and Richardson method.

Theorem 14.1 (spectral radius theorem). Let x(k+1) = G1x
(k)+G2b be an iterative

method for solving Ax = b. If ρ(G1) < 1, then the iteration converges to the unique
solution Ax∗ = b for any initial guess x(0). Moreover, if we denote the error as
e(k) = x(k) − x, we have the following linear convergence in some norm given by the
previous lemma

‖e(k+1)‖ ≤ ρ(G1)‖e(k)‖
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Below is an exercise for Jacobi to establish conditions where the theorem applies
Here’s an exercise on the convergence of the Jacobi method for strictly diagonally
dominant matrices:

Exercise 14.2 (convergence of Jacobi for strictly diagonally dominant matrices).
Let A be a strictly diagonally dominant matrix, i.e., for each row i,

|aii| >
∑
j 6=i

|aij|.

Show that the Jacobi iteration converges for such matrices.
Hint: Recall that for Jacobi iteration, G1 = −D−1(L + U). Show that ‖G1‖∞ <

1.

15 Convergence of Iterative Methods for Linear

Algebra (September 29, 2025)

Last time, we introduced the following iterative methods along with their matrix
forms:

• Jacobi Iteration:
x(k+1) = D−1(b− (L + U)x(k))

• Gauss-Seidel Iteration:

x(k+1) = (D + L)−1(b−Ux(k))

• Successive Over Relaxation (SOR):

x(k+1) = (D + ωL)−1(ωb− (ωU + (ω − 1)D)x(k))

• Richardson Iteration:

x(k+1) = x(k) + ω(b−Ax(k)) = (I− ωA)x(k) + ωb

Where:

• D is the diagonal of A

• L is the strictly lower triangular part of A
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• U is the strictly upper triangular part of A

• ω is a relaxation parameter (for SOR and Richardson)

• I is the identity matrix

Recall from last time that we showed

x(k+1) = G1x
(k)+G2b converges if and only if ‖G1‖ < 1 for some matrix norm ‖ · ‖

Unlike the condition of strict diagonal dominance, it is often difficult to find an
appropriate matrix norm. We can instead look at the eigenvalues of G1.

15.1 Spectral Radius Theorem

We now state an important definition and two important results.

Definition 15.1 (spectral radius). The spectral radius of a matrix A, denoted ρ(A),
is defined as

ρ(A) = max{|λ| : λ is an eigenvalue of A}.
Note that in the above definition, the eigenvalues of A can be complex numbers.

Lemma 15.1. If ρ(A) < 1, then there exists a matrix norm ‖ · ‖ such that ‖A‖ < 1.

Below is the main convergence theorem that we need to study Jacobi, Gauss
Seidel, Successive Over Relaxation, and Richardson method.

Theorem 15.1 (spectral radius theorem). Let x(k+1) = G1x
(k)+G2b be an iterative

method for solving Ax = b. If ρ(G1) < 1, then the iteration converges to the unique
solution Ax∗ = b for any initial guess x(0). Moreover, if we denote the error as
e(k) = x(k) − x, we have the following linear convergence in some norm given by the
previous lemma

‖e(k+1)‖ ≤ ρ(G1)‖e(k)‖
The spectral radius determines the speed of convergence for iterative methods in

a manner similar to fixed-point iteration in one dimension. Specifically:

Remark 15.1 (speed of iterative method). The spectral radius ρ(G1) determines
the asymptotic rate of convergence of the iterative method. A smaller spectral radius
leads to faster convergence. In particular:

• If ρ(G1) ≈ 0, the method converges very quickly.

• If ρ(G1) ≈ 1, the method converges slowly.

This is what we had for FPI in 1D. The speed of xn+1 = g(xn) to a fixed point
r = g(r) was determined by g′(r) through en+1 ≈ g′(r)en.
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15.1.1 Application to SPD matrices

We now look at the special case of SPD matrices A. Recall that the eigenvalues of A
are real and positive, and the eigenvectors of A are orthogonal. First, is an example
of Richardson iteration.

Example 15.1 (convergence of Richardson for SPD matrices). We consider A to be
SPD. Recall that this means A has positive real eigenvalues. Let λmax, λmin be the
maximum and minimum eigenvalues. The Richardson iteration is

x(k+1) = (I− ωA)x(k) + ωb = G1x
(k) + G2b

where G1 = (I− ωA). Notice that if v is an eigenvector of A with Av = λv, then

G1v = v − ωAv = (1− ωλ)v,

and (1−ωλ) is an eigenvalue of G1. Notice that we then have the following inequality
for the eigenvalues of G1 (denoted µ):

1− ωλmax ≤ µ ≤ 1− ωλmin,

so the spectral radius of G1 is

ρ(G1) = max{|1− ωλmin|, |1− ωλmax|}.

Hence, Richardson iteration converges for 0 < ω < 2
λmax

.

We can in fact derive an optimal value for ω that gives the fastest convergence
of Richardson. It is left as an exercise below.

Exercise 15.1 (optimizing Richardson iteration convergence). Consider the Richard-
son iteration for an SPD matrix A with minimum and maximum eigenvalues λmin
and λmax, respectively.

• Find the optimal value of ω that minimizes the spectral radius ρ(G1), where
G1 = I− ωA.

• Express the spectral radius ρ(G1) at this optimal ω in terms of the condition
number κ2(A) = λmax/λmin.

Hint: For part (a), consider the expression for ρ(G1) derived in the example. For
part (b), recall the definition of the condition number for SPD matrices.
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For Richardson, the choice of ω is crucial for convergence. For SPD matrices,
SOR converges for many choices of ω.

Theorem 15.2 (convergence of SOR for SPD matrices). Let A be a symmetric pos-
itive definite matrix. Then the Successive Over Relaxation (SOR) method converges
for any relaxation parameter ω satisfying 0 < ω < 2.

Corollary 15.1 (convergence of Gauss Seidel for SPD matrices). Let A be a sym-
metric positive definite matrix. Then the Gauss Seidel method converges.

16 Descent Methods for SPD Matrices (October

3-6, 2025)

The last set of iterative methods we will look at for SPD matrices, A, are what are
known as descent methods. These methods seek to minimize

φ(x) =
1

2
xTAx− xTb.

Exercise 16.1. Show the following using calculus

• ∇φ(x) = Ax− b

• Show that minimizing φ means we find an x such that ∇φ(x) = 0, which is
equivalent to Ax = b.

A descent method chooses a descent direction d(k) and step size αk and sets

x(k+1) = x(k) + αkd
(k).

The direction is called a descent direction if

d(k) · ∇φ(x(k)) ≤ 0,

which means we are looking in a direction that reduces φ.
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x(k)

−∇φ(x(k))

d(k)

Figure 10: Level sets of φ and the negative gradient at a point x(k). A possible
descent direction is labeled as d(k).

The steepest possible direction that minimizes the LHS above is

d(k) = −∇φ(x(k)) = b−Ax(k).

If we take a fixed step size αk = ω > 0, then the update formula is

x(k+1) = x(k) + αkd
(k) = x(k) + ω(b−Ax(k)),

which is Richardson iteration. From now on, we denote

r(k) = b−Ax(k)

as the residual.

16.1 Steepest descent method

Richardson iteration can be quite slow, what if we choose αk at every step to minimize
φ? That is, we set

αk = argminαφ(x(k) + αd(k)).

Taking the derivative, we get

d

dα
φ(x(k) + αd(k)) =

d

dα

[
1

2

(
x(k) + αd(k)

)T
A
(
x(k) + αd(k)

)
−
(
x(k) + αd(k)

)T
b

]
= α(d(k))TAd(k) + (d(k))TAx(k) − (d(k))Tb

= α(d(k))TAd(k) + (d(k))T
(
Ax(k) − b

)
= α(d(k))TAd(k) − (d(k))T r(k)
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Hence, solving d
dα
φ(x(k) + αd(k)) = 0 yields

αk =
d(k) · r(k)

d(k) ·Ad(k)
,

and we have an improved update formula (for r(k) = d(k))

αk =
r(k) · r(k)

r(k) ·Ar(k)

x(k+1) = x(k) + αkr
(k).

This iteration is known as steepest descent method.

Remark 16.1 (connection to optimization). Richardson and steepest descent meth-
ods are essentially gradient descent methods applied to φ. Richardson has a fixed
step size, while steepest descent method performs what is known as an exact line
search to find the optimal step size αk. We are lucky in the case of φ since it is
easy to find the best αk. For minimizing more general functions not coming from
linear algebra, exact line search is replaced with backtracking algorithm like Armijo
backtracking.

Exercise 16.2 (convergence of steepest descent). Suppose x(0) is the initial guess
for Richardson and steepest descent. Let e(k) be the error of steepest descent and let
e(k),R be the error for Richardson. We define a new norm called the A-norm:

‖x‖A =
√

x ·Ax.

Show that for all k:
‖e(k)‖A ≤ ‖e(k),R‖A.

This shows that steepest descent provides an improvement on Richardson, although
it is only modest.
Hint: Show that there is a constant C that depends on A,b such that φ(x(k)) +C =
‖e(k)‖2A.

16.2 Conjugate Gradient method

The last iterative method we will cover is Conjugate Gradient (CG) method. The
method is complicated to derive, so we will go over the main features and mention
the algorithm. Similar to Richardson and steepest descent, our goal is to minimize
φ.
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16.2.1 First step: steepest descent

Given an initial guess x(0), the first step of CG is to follow the steepest descent
direction

d(0) = −∇φ(x(0)) = r(0)

and step size α0 = r(0)·d(0)

d(0)·Ad(0) . Recall that the choice of α was so that φ(x(0) + αd(0))
was minimized. In other words we minimized φ over a line

x(1) = argmin
x∈x(0)+S0

φ(x), S0 = span{r(0)}

16.2.2 Second step: iterative minimization

The idea of CG is to try to now minimize over a larger subspace. In this case, we
pick x(1) to solve the following 2D minimization problem

x(2) = argmin
x∈x(0)+S1

φ(x), S1 = span{r(0),Ar(0)}

Let’s now write x = x(0) + αr + βd, where d is some direction determined later and
r = r(0). We compute φ(x):

φ(x) = φ(x(0) + αr + βd) =
1

2

(
x(0) + αr + βd

)T
A
(
x(0) + αr + βd

)
−
(
x(0) + αr + βd

)T
b

=
1

2
x(0) ·Ax(0) − b · x(0) −αr · r +

α2

2
r ·Ar︸ ︷︷ ︸

function of just α

−βd · r +
β2

2
d ·Ad︸ ︷︷ ︸

function of just β

+αβd ·Ar︸ ︷︷ ︸
cross term that we want to be 0

16.2.3 Third step: orthogonalization procedure

Notice that if d ·Ar = 0, then we could minimize α and β separately. We define

〈d, r〉A := d ·Ar

as a new inner product (think of it as a weighted dot product). The equation
〈d, r〉A = 0 now just means that we want d ⊥ r in the new inner product 〈·, ·〉A.

In this case, we have freedom of the choice of d, since {r,d} just need to be a basis
for span{r(0),Ar(0)}. What we can do is apply a Gram Schmidt orthogonalization

d := Ar(0) − 〈Ar(0), r(0)〉A
〈r(0), r(0)〉A

r(0)
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S0 = span{r(0)}

Ar(0)

〈Ar(0),r(0)〉A
〈r(0),r(0)〉A

r(0)

d

Figure 11: Gram-Schmidt orthogonalization procedure to find d = d(1). Note that
perpendicular in this picture is with respect to the new 〈·, ·〉A inner product.

Once we have this direction d, then minimizing α is actually the α from the previous
step α0 = r(0)·d(0)

d(0)·Ad(0) and

φ(x) =
1

2
x(0) ·Ax(0) − b · x(0) − α0r · r +

α2
0

2
r ·Ar− βd · r +

β2

2
r ·Ar.

Since the optimal α was α0, we have that the optimal x is x = x(0) + α0r
(0) + βd =

x(1) + βd. I’ll now call d(1) = d as the new direction. Thus, our 2D minimization
problem has turned into a 1D minimization problem for β:

φ(x(1) + βd(1)) =
1

2
x(1) ·Ax(1) − x(1) · b +

β2

2
d(1) ·Ad(1) − βd(1) · r(1)︸ ︷︷ ︸
function of β to minimize

whose optimal value is β = α1 = d(1)·r(1)
d(1)·Ad(1) .

16.2.4 Summary: One step of CG and algorithm

Let’s now summarize one step of this minimization procedure

• We were given the initial residual and direction d(0) = r(0), current guess x(1), and
current residual r(1).

• We determined a good direction

d(1) = Ar(0) − 〈Ar(0), r(0)〉A
〈r(0), r(0)〉A

r(0) = Ar(0) − 〈Ar(0), r(0)〉A
〈r(0), r(0)〉A

d(0)

so that the minimization over x + span{r(0),Ar(0)} became a 1d minimization
problem in the direction d(1).
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Exercise 16.3. Show that

d(1) = r(1) − r(1) · r(1)
r(0) · r(0) d(0)

• We found the optimal step size in direction d(1)

α1 =
d(1) · r(1)

d(1) ·Ad(1)

We then set
x(2) = x(1) + α1d

(1).

We can continue this pattern with the following algorithm.

Input: SPD matrix A, RHS vector b, and initial guess x(0)

Output: Approximate solution x to Ax = b

r(0) ← b−Ax(0);
d(0) ← r(0) ;
for k ← 0 to Nmax do

αk ← d(k)·r(k)
d(k)·Ad(k) ; (optimizes over line)

x(k+1) ← x(k) + αkd
(k); (update x)

r(k+1) ← r(k) − αkAd(k); (update r)
if r(k+1) is small then

return x(k+1);
end

βk ← r(k+1)·r(k+1)

r(k)·r(k) ; (comes from Gram Schmidt orthogonalization)

d(k+1) ← r(k+1) + βkd
(k); (new direction)

end
Algorithm 11: Conjugate gradient method

Conjugate gradient is very fast. We now state two results about how fast CG is.

Theorem 16.1 (minimization property of CG). Let x(k+1) be the sequence of iterates
produced by CG. Then,

x(k+1) = argmin
x∈x(0)+Sk

φ(x), Sk = span{r(0),Ar(0), . . . ,Akr(0)}

The above theorem essentially means that CG terminates in n steps because
Sn−1 = Rn. We usually stop the iteration much sooner and the next result states
that convergence to the solution is quite fast.
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Theorem 16.2 (convergence of CG). Let x(k) be the sequence of iterates produced
by CG. Then, the error satisfies

‖e(k+1)‖A ≤
√
κ2(A)− 1√
κ2(A) + 1

‖e(k)‖A

where
‖v‖A =

√
〈v,v〉A

Remark 16.2 (comparison with Richardson and steepest descent). CG is much

faster than Richardson and steepest descent due to

√
κ2(A)−1√
κ2(A)+1

factor multiplying the

error rather than the κ2(A)−1
κ2(A)+1

factor from Richardson or steepest descent.

17 Least squares (October 6-8, 2024)

This will be the last linear algebra lecture. So far, we have studied how to solve
Ax = b where A is an n × n matrix. This lecture now considers solving Ax ≈ b,
where A is an m × n matrix and m > n. This is known as an underdetermined
system meaning there are more equations than unknowns. It is very likely that in
this case, there is no solution to Ax = b. Here we replace solving Ax = b with
minimizing

min
x

1

2
‖Ax− b‖22 =

1

2

n∑
i=1

((Ax)i − bi)2

which is finding the least squares solution. These kinds of problems are ubiquitous
but a common application is fitting a curve to data.

Example 17.1 (line of best fit). Let (ti, bi)
m
i=1 be a set of data points. We expect

that they have a linear relationship bi ≈ mti + c. The system of equations that we
would like to apply least squares to is

1 t1
1 t2
...

...
1 tm


(
c
m

)
=


b1
b2
...
bm


Example 17.2 (power law fit). Let (ti, bi)

m
i=1 be a set of data points. We expect

that they have a linear relationship

bi ≈ ctpi .
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How might we get this into a linear form? One way is to take the log of both sides

log bi ≈ log c+ p log ti

The system of equations that we would like to apply least squares to is
1 log t1
1 log t2
...

...
1 log tm


(

log c
p

)
=


log b1
log b2

...
log bm


In numerical methods, this kind of best fit is useful for evaluating the convergence
of a numerical method. Often ti is replaced by a numerical parameter, hi, and yi is
replaced by some error ei. We often have theorems saying ei = chpi for some power
p. We can then test the algorithm by trying different h values and putting a power
law fit to the error.

Exercise 17.1 (exponential fit). Show that you can fit data (ti, bi)
m
i=1 with an ex-

ponential fit yi ≈ cekti through finding the least squares solution of
1 t1
1 t2
...

...
1 tm


(

log c
k

)
=


log b1
log b2

...
log bm


17.1 Normal equations

How might we find a least squares solution of Ax = b? We now look to the opti-
mization problem

min
x

1

2
‖Ax− b‖22 = min

x

1

2

n∑
i=1

((Ax)i − bi)2

Theorem 17.1 (normal equations). Let A be an m × n matrix with m ≥ n and
with full column rank. The vector x minimizes ‖Ax−b‖22 if and only if x solves the
normal equations:

ATAx = ATb
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Proof. Since A has full column rank, the columns of A (denoted {a1, a2, . . . an})
form a basis of the range of A (denoted R(A)). Using this fact of the basis of the
range, we have that

x = argminx

1

2
‖Ax− b‖22 if and only if z = Ax = argminv in R(A)

1

2
‖v − b‖22

I now claim that the minimizer to the problem

min
v in R(A)

1

2
‖v − b‖22

solves ATz = ATb. The minimizer to the above problem is the orthogonal projection
of b onto R(A):

z = projR(A)(b).

A key property of the orthogonal projection is that the difference between b, z is
orthogonal to R(A):

y · (z− b) = 0 for all y in R(A)

The above equation also holds for each basis vector of R(A):

ai · (z− b) = 0 for all i = 1, . . . , n.

In matrix form, this reads AT (z − b) = 0 or ATz = ATb. Using the fact that
Ax = z completes the proof.

Remark 17.1 (pseudoinverse). We have that the least squares solution is x =
(ATA)−1ATb. The matrix A† = (ATA)−1AT is the Moore-Penrose pseudoinverse
for a matrix with full column rank. It satisfies A†A = I (but not AA† = I like a
normal inverse would also satisfy).

Remark 17.2 (solving the normal equations). Notice that if A is an m× n matrix
with m large and n small, then ATA is a small n×n matrix. Moreover, ATA will be
SPD if A has full column rank. Thus, we can use a bunch of our previously learned
linear algebra techniques for SPD matrices to solve ATAx = ATb.

Remark 17.3 (solving the normal equations: poor conditioning). Notice that if A
is full column rank, then ATA is SPD (left as an exercise). This means we can
apply our large array of methods to solve the normal equations ATAx = b directly.
However, there is a small problem; often the normal equations are poorly conditioned.
To see this, we write an SVD of A

A = UTΣV,
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and compute ATA:
ATA = VTΣUUTΣV = VTΣ2V

The condition number of ATA is

κ2(A
TA) =

λmax(A
TA)

λmin(ATA)
=
σmax(A)2

σmin(A)2
.

In essence, we have just doubled the condition number of A. For larger least squares
problems, this can lead to trouble.

Remark 17.4 (QR decomposition). Another way to solve a least squares problem
minx

1
2
‖Ax−b‖22 is to perform a QR decomposition of A. That is, we write A = QR

where Q is an m×m rotation matrix (QTQ = QQT = I) and R is an m× n upper
triangular matrix. Writing

R =

(
R1

0

)
where R1 is a square n×n matrix. We have that the least squares solution to Ax = b
is x = R−11 (QTb)1, where (QTb)1 is the first n components of QTb. Notice this only
involves a matrix multiplication and inverting an upper triangular matrix once we
know the factorization A = QR and conditioning is less of an issue.

18 Polynomial Interpolation (Lectures October 10-

27, 2025)

Suppose we have points (xi, yi) for i = 0, . . . , n where yi = f (xi). Here, f may
be expensive to compute as it could be from solving a differential equation or from
running a lab experiment. It could also be impossible compute for every x. The
remedy this problem, we approximate f with some polynomial pn, which is easy and
efficient to compute. This set of lectures is concerned with the following questions

• How do we find a polynomial st p (xi) = yi ?

• Is p(x) ≈ f(x) for x 6= xi ?

18.1 Lagrange Form of Interpolating Polynomial (Lecture
October 10, 2025)

Our first example will be of linear interpolation. Say I have 2 data pts (x0, y0) , (x1, y1)
we can just connect them with a straight line.
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y

x
(x0, f(x0))

(x1, f(x1))

The equation for the lst degree polynomial interpolating (x0, y0) and (x1, y1) is

p(x) = y1
(x− x0)
(x1 − x0)

+ y0
(x− x1)
(x0 − x1)

= y1`1(x) + y0`0(x)

Note that `0, `1 satisfy
`0 (x0) = 1, `0 (x1) = 0
`1 (x0) = 0, `1 (x1) = 1,

so the linear interpolant is expressed in terms of functions that activate on each
individual xi point. How do we build an interpolating polynomial for more data
points (xi, yi) for i = 0, . . . , n?

Following the example of linear interpolation, one approach would be to find
polynomials `i such that they satisfy{

`i(xi) = 1

`i(xj) = 0, for j 6= i

and then write the interpolating polynomial as

pn(x) =
n∑
i=0

yi`i(x). (2)

If we can find such `i, then p (xi) = yi for all i. The polynomials `i do in fact exist
and are given by

`i(x) =
n∏
j 6=i
j=0

(
x− xj
xi − xj

)
. (3)

Notice that the product ensures that if x = xj for j 6= i, then `i(xj) = 0. Dividing
by xi−xj in each term of the product enforces the condition that `i(xi) = 1 because
then the formula is just a product of all 1. These polynomials li in (3) are known
as the Lagrange basis for points {xi}ni=0 and (2) is called the Lagrange form. of an
interpolating polynomial.
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18.2 Uniqueness of Interpolating Polynomial

The construction of the Lagrange form of interpolating polynomial in (2) shows that
if given (xi, yi) for i = 0, . . . , n, then there exists an interpolating polynomial pn.
We can see from the Lagrange basis in (3) that since each `i is the product of n
linear functions, then the degree of the polynomial, pn, is guaranteed to be less than
n. The question one may ask is whether this interpolating polynomial is unique?
This would be important to know, so that we know there is just one answer when
constructing such approximations.

Theorem 18.1 (existence and uniqueness of interpolating polynomial). Let (xi, yi)
for i = 0, . . . , n be n + 1 points such that xi 6= xj for all i 6= j, i.e. the xi’s are
distinct. There is a unique polynomial of degree at most n such that p (xi) = yi for
all i.

Proof. Existence comes from our Lagrange form construction in (2). For uniqueness,
we want to show that if there are two interpolating polynomials pn, qn of degree at
most n, then pn = qn.

Suppose pn, qn are interpolating polynomials of degree at most n. Let rn = pn−qn,
which is a polynomial of degree at most n. Looking at the interpolation points xi,
we have

rn(xi) = pn(xi)− qn(xi) = yi − yi = 0

for each i = 0, . . . , n. Since rn is a polynomial of degree at most n, rn has at most n
roots if it is nonzero. Since rn has n+ 1 roots, rn = 0, and pn = qn.

18.3 Newton Algorithm and Newton Form

The Lagrange basisflomis very convenient. I use it often. One disadvantage is it
is often hard to incorporate new data easily because we would have to reconstruct
the `is everytime. This is where the Newton algorithm and Newton form of the
interpolating polynomial comes in.

18.3.1 Newton Algorithm

Say we have (xi, yi) i = 0, · · · , n with interpolating polynomial pn, and say I want
to add a new data point. we look for

pn+1(x) = pn(x) + c ·
n∏
i=0

(x− xi)
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We then use (xn+1, yn+1) to determine c. We want

yn+1 = pn+1 (xn+1) = pn (xn+1) + c
n∏
i=0

(xn+1 − xi) .

Solving for c yields

c =
yn+1 − pn(xn+1)∏n
i=0(xn+1 − xi)

and

pn+1(x) = pn(x) + (yn+1 − pn(x))
n∏
i=0

(x− xi)
(xn+1 − xi)

. (4)

Notice that the formula (4) is a recursive update formula. We can then generate
the interpolating polynomial by starting with p0(x) = y0. Once we have pk, we
update pk+1 with formula (4) by replacing n = k. We continue the process until we
have an interpolating polynomial pn through the data points (xi, yi) for i = 0, . . . , n.
This procedure is known as Newton’s algorithm and the resulting form is called the
Newton form:

pn(x) =
n∑
i=0

ai

i−1∏
j=0

(x− xj) (5)

where ai = yi−pi−1(xi)∏i−1
j=0(xi−xj)

and pi is the interpolating polynomial through the points

xk = 0, . . . xi. Let’s now work through an example.

Example 18.1. Let xi = 0, 1, 2 and yi = −5,−3,−15. We start by interpolating
(x0, y0) with

p0(x) = −5

To compute p1, we write p1(x) = p0(x) + c(x− x0). We set

−3 = p1(x1) = −5 + c(x1 − x0) = −5 + c =⇒ c = 2

so p1(x) = −5 + 2x. We finally compute p2 by writing p2(x) = p1(x) + cx(x− 1) and
solving for c

−15 = p2(2) = p1(2) + 2c = 1 + 2c =⇒ c = −7.

Hence, the interpolating polynomial in Newton form is

p2(x) = −5 + 2x− 7x(x− 1) (6)
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Figure 12: Data and interpolating polynomial from Example 18.1

18.3.2 Nested Multiplication (Lecture October 20, 2025)

Since the goal of polynomial interpolation is to have an efficient approximation of
some function f , what is an efficient way to evaluate an interpolating polynomial
pn? Going back to our example of interpolating xi = 0, 1, 2 and yi = −5,−3,−15,
we had from (6) that the interpolating polynomial is

p2(x) = −5 + 2x− 7x(x− 1).

Consider two ways of rewriting p2. The first is to expand all of the multiplications:

P2(x) = −5 + 9x− 7x2. (7)

Another approach would be to factor the polynomial

P2(x) = −5 + x(2− 7(x− 1)) (8)

How do each of these formulas compare in terms of FLOPs? Counting each addition
and multiplication, we have that both (7) and (8) cost 5 FLOPs and the original
formula (6) takes 6 FLOPs. In general, the nested factoring strategy in (8) is most
efficient and is known as nested multiplication.

For a general nested formula, we know a Newton polynomial in (5) is

pn(x) =
n∑
i=0

ai

i−1∏
j=0

(x− xj)

= a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .+ an(x− x0)(x− x1) · · · (x− xn−1)
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We now repeat the factoring process by factoring (x− x0):

pn(x) = a0 + (x− x0)
[
a1 + a2 (x− x1) + · · ·+ an (x− x1) · · · (x− xn)

]
and now factoring (x− x1)

pn(x) = a0 + (x− x0)
[
a1 + (x− x1)

[
a2 + · · ·+ an (x− x2) · · · (x− xn)

]]
.

We continue the pattern to get the new formula

pn(x) = a0 + (x− x0)
[
a1 + (x− x1)

[
a2 + (x− x2)

[
a3 + · · ·+ an (x− xn)

]]]
.

This full nested form can be written as a for loop in the following pseudocode
Input: Coefficients a0, . . . , an, interpolation points x0, . . . , xn−1, evaluation

point x
Output: Value of the interpolating polynomial pn(x)

p← an;
for i← n− 1 to 0 (loop backwards) do

p← ai + (x− xi) · p;
end
return p;

Algorithm 12: Nested multiplication algorithm for evaluating Newton form poly-
nomial

This code takes 3n FLOPs. The traditional or naive way of evaluating the Newton
form of pn in (5)

pn(x) =
n∑
i=0

ai

i−1∏
j=0

(x− xj)

takes many more FLOPs. To see this, we notice that for each i, there are i − 1
multiplications and i − 1 subtractions. Adding the whole sum then takes n + 1
additions. The total number of FLOPs for the naive evaluation is

FLOPs = (n+ 1) + 2
n∑
i=0

(i− 1) = O(n2).

The nested form is much more efficient in terms of number of FLOPs.
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18.3.3 Divided Differences

There is another view of the Newton form of the polynomial from (5), which is
divided differences. Recall that the Newton form is

pn(x) =
n∑
i=0

ai

i−1∏
j=0

(x− xj).

This new perspective will shed light on the coefficients ai and show that the Newton
form of an interpolating polynomial is a discrete version of a Taylor expansion.

Suppose that pn interpolates the function f through the points xi for i = 0, . . . , n.
We’ll denote the function values as fi = f(xi). The first coefficient is

a0 = pn(x0) = f0.

We now look at a1. We want a1 to satisfy

f1 = pn(x1) = a0 + a1(x1 − x0).

Subtracting a0 = f(x0) from both sides and dividing by (x1 − x0) yields

a1 =
f1 − f0
x1 − x0

.

The above formula is known as a finite difference. It mimics the first derivative of f .
Thinking in terms of a Taylor expansion, we might expect that a2 looks like a

second derivative of f . We compute pn(x2) to find a2

f2 = pn(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

Solving for a2 yields

a2 =
f2 − a1(x2 − x0)− a0

(x2 − x0)(x2 − x1)
Notice that

a1(x2 − x0) + a0 = a1(x2 − x1) + a1(x1 − x0) + a0 = a1(x2 − x1) + f1,

and inserting into the formula for a2 leads to

a2 =
f2 − f1 − a1(x2 − x1)

(x2 − x0)(x2 − x1)
=

f2 − f1
(x2 − x0)(x2 − x1)

− a1
(x2 − x0)
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We then use the fact that a1 = f1−f0
x1−x0 to get

a2 =

f2−f1
x2−x1 −

f1−f0
x1−x0

x2 − x0
.

Notice that a2 is now a difference of differences, and it mimics a second derivative of
f .

These coefficients come from what are known as divided differences.

Definition 18.1 (divided differences of f). The divided differences of a function f
on points x0, . . . , xn are defined recursively as follows:

f [xi] = f(xi) for i = 0, . . . , n (base case)

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
for k = 1, . . . , n

where f [xi, . . . , xi+k] denotes the k-th order divided difference of f on the points
xi, . . . , xi+k.

Example 18.2 (lower order divided differences). For three points x0, x1, x2, the
divided differences are

• Zeroth order difference as function evaluation

f [x0] = f(x0), f [x1] = f(x1), f [x2] = f(x2)

• First order difference as a discrete derivative

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
, f [x1, x2] =

f [x2]− f [x1]

x2 − x1

• Second order difference as a discrete second derivative

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

For the Newton form of an interpolating polynomial, the coefficients are given by
divided differences.
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Proposition 18.1 (Newton form of interpolating polynomial and divided differ-
ences). Let pn be the interpolating polynomial of degree at most n interpolating f
through the points x0, . . . , xn. The Newton form of pn in terms of divided differences
is

pn(x) =
n∑
i=0

f [x0, . . . , xi]
i−1∏
j=0

(x− xj).

The divided differences give an efficient way to compute the Newton form of
pn through what is known as a divided differences table. Each row of the table
corresponds to a point xi and each column is the next order divided difference. We
show how this works through an example.

18.3.4 Divided differences table (Lecture October 22, 2025)

Example 18.3 (divided differences table). Let f(x) = 2x and let xi = 0, . . . , 3. The
divided differences table is

xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+2] f [x0, x1, x2, x3]
0 1
1 2 2−1

1−0 = 1

2 4 4−2
2−1 = 2 2−1

2−0 = 1
2

3 8 8−4
3−2 = 4 4−2

3−1 = 1 1−0.5
3−0 = 1

6

We then take the diagonal as the coefficients of the interpolating polynomial in
Newton form. The resulting Newton form of the interpolating polynomial p3 is

p3(x) = 1 + x+
1

2
x(x− 1) +

1

6
x(x− 1)(x− 2)
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Figure 13: Data and interpolating polynomial from Example 18.3. Notice that the
interpolating polynomial does not do well for extrapolating an exponential trend
beyond its data.

18.4 Polynomial Interpolation and Root Finding

Polynomial interpolation can be useful in some rootfinding applications. We go over
two such techniques.

18.4.1 Inverse Interpolation

The goal of root finding is to find r such that f(r) = 0. If f is an invertible function,
then we may write r = f−1(0). The idea of inverse interpolation is instead of interpo-
lating (xi, f(xi)) for i = 0, . . . , n, we interpolate the inverse function by interpolating
the points (f(xi), xi). Our interpolant pn ≈ f−1 and we get an approximate root by
writing r = pn(0). This technique can be used to get an approximate root in one
iteration or we can incoporate it into an iterative root finding algorithm, as we’ll see
in the next example

Example 18.4 (inverse interpolation and secant method). Suppose we have points
(x0, f(x0)), (x1, f(x1)). We can construct a linear interpolant of the inverse function
using the Newton form:

p1(y) = x0 + (x1 − x0)
y − f(x0)

f(x1)− f(x0)

To find an approximate root, we evaluate p1(0):

r ≈ p1(0) = x0 −
(x1 − x0)

f(x1)− f(x0)
f(x0)
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This formula shows up in the secant method and method of false position.

18.4.2 Companion Matrix

Suppose pn is a polynomial approximation of f . We hope that the roots of pn are
approximate roots of f . The technique we will use to compute the roots of pn is
called the companion matrix. One advantage of the companion matrix is it enables
us to potentially find many distinct roots of a function if there happen to be such
roots.

Given a polynomial pn(x) of degree n in the monomial basis

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

The companion matrix C for this polynomial is an n× n matrix defined as:

C =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 1 −an−1


The companion matrix has an important property that we leave as an exercise.

Exercise 18.1. Show that the eigenvalues of C are the roots of pn. Hint: Show the
characteristic polynomial satisfies det(xI−C) = pn(x).

Hence, finding the roots of the polynomial pn is equivalent to finding eigenvalues
of C. If we have a good code for solving eigenvalues, then we can find multiple roots
of pn and

These properties make the companion matrix useful for finding roots of polyno-
mials, as the problem of finding roots is transformed into an eigenvalue problem.
Standard numerical methods for computing eigenvalues (such as the QR algorithm)
can then be applied to find the roots of the original polynomial.

18.5 Vandermonde Matrix

The final topic on constructing polynomials that we will discuss is that of the Van-
dermonde matrix. Instead of using the Lagrange or Newton form of an interpolating
polynomial, we use linear algebra to construct the interpolating polynomial. To con-
struct the interpolating polynomial using the Vandermonde matrix, we start with
the monomial basis representation of the polynomial:
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Let
pn(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n

be the interpolating polynomial of degree at most n that passes through the points
(xi, yi) for i = 0, . . . , n. We want to find the coefficients a0, a1, . . . , an.

For each point (xi, yi), we have the equation:

yi = pn(xi) = a0 + a1xi + a2x
2
i + · · ·+ anx

n
i

We can write this as a system of linear equations:
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xn x2n · · · xnn


︸ ︷︷ ︸

=V


a0
a1
a2
...
an

 =


y0
y1
y2
...
yn


The matrix V on the left-hand side is called the Vandermonde matrix. The linear

system can be written in matrix vector form as

Va = y

where a = [a0, a1, . . . , an]T is the vector of coefficients we want to find, and y =
[y0, y1, . . . , yn]T is the vector of function values.

To solve for the coefficients, we need to solve the above system using techniques
we have learned like Gaussian elimination, partial pivoting, etc. Does there exist a
solution to the above linear system? The answer is given in the below exercise.

Exercise 18.2. Let V be the Vandermonde matrix. Show that if the xi are distinct,
then there exists a unique solution a to Va = y. Hint: Use uniqueness of polynomial
interpolation to prove this.

Remark 18.1 (poor conditioning of the Vandermonde matrix). One drawback of
this approach is that the Vandermonde matrix is ill-conditioned. This is because
the monomials become nearly linearly dependent as n gets larger. We can choose a
different basis to represent the polynomial to get a better conditioned matrix.
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18.6 Error of Polynomial Interpolation (Lecture October 24,
2025)

Now that we know a few ways of constructing polynomials, the next question to
answer is how accurate is pn(x) ≈ f(x) when x is not an interpolation point? To
answer this, we need to develop a theory of polynomial interpolation error.

18.6.1 General theory

We’ll build the theory starting from the ground up. Consider the simplest case of
interpolating f(x) at x0 with a degree zero polynomial p0.

y

x
x0

f(x)

p0(x)

We consider an error function e0(x) = f(x)− p0(x). Notice that e0(x0) = 0.

y

x
x0

xc

e0(x)

At any other point x, we have by Mean Value Theorem

e0(x)−����e0(x0) = e′0(c)(x− x0)
for some c in between x and x0. Computing the derivative of e0, we use the fact that
the derivative of p0 is zero because p0 is a constant to get

e′0(c) = f ′(c)− p′0(c) = f ′(c)

Hence,
f(x)− p0(x) = e0(x) = f ′(c)(x− x0),

and we can characterize the error between f and p0 using just f ′, x, x0.
Let’s highlight a few key features of the argument of what we used.
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• We wrote an error function e0(x) = f(x)− p0(x).

• We can characterize the error at a point using Mean Value Theorem to get the
error in terms of (x− x0) and e′0.

• In order to not have any dependence on p0, we use the fact that p′0 = 0.

In order to go to the case of a higher polynomial degree, say p1 interpolates f at
x0, x1, we repeat the argument by looking at the error function e1(x) = f(x)−p1(x).

y

x
x1x0

f(x)
p1(x)

y

x
x1x0

e1(x)

In order to apply a Mean Value Theorem type argument and lose the dependence
on p1, we need to take 2 derivatives to use p′′1 = 0. This will require a repeated
application of MVT and requires not looking at the error function but rather an
interpolant of the error function.

We look at the error function e1(x) = f(x)−p1(x) and now fix a point x to study
the error at x. In order to take two derivatives of e1 and connect it to the error e1(x),
we interpolate e1 with a degree 2 polynomial q2 at x0, x1, x.

q2(y) = e1(x)
(y − x0)(y − x1)
(x− x0)(x− x1)

.

y

xx
x1x0

e1(x)

q2(x)

Notice that q′′2(y) = 2e1(x)
(x−x0)(x−x1) , so taking two derivatives will get us the error at x.

Notice that e1(y)− q2(y) = 0 at y = x0, x1, x, this means we can apply MVT on each
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interval to get a1, a2 such that e′1(ai) − q′2(ai). Repeating MVT again gives a c in
between a1, a2 such that e′′1(c)− q′′2(c) = 0. To summarize, we have

f ′′(c)−���p′′1(c) = e′′1(c) = q′′2(c) =
2e1(x)

(x− x0)(x− x1)
.

y

x
xx1x0 a1 a2

e1(x)− q2(x)

y

x
ca1 a2

e′1(x)− q′2(x)

Rearranging gives

f(x)− p1(x) =
f ′′(c)

2
(x− x0)(x− x1).

where c is some number in between min{x, x0, x1} and max{x, x0, x1}. This pattern
holds in general for higher degree polynomials. We summarize it in the following
theorem

Theorem 18.2 (error of polynomial interpolation). Let x0 < x1 < . . . < xn be n+1
distinct points. Let pn interpolate f through the xi’s and assume f is n + 1 times
continuously differentiable. The error at a point x is

f(x)− pn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn) =

f (n+1)(c)

(n+ 1)!

n∏
i=0

(x− xi)

where min{x, x0, x1, . . . , xn} = a ≤ c ≤ b = max{x, x0, x1, . . . , xn}.

18.6.2 Evenly spaced points

The previous theorem depends on the choice of points xi and the point x and can be
hard to find the value on the RHS. One simplification is to consider evenly spaced
points. We now go over the special case.
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Theorem 18.3 (polynomial interpolation error on evenly spaced points). Thm Let
f satisfy the conditions of the last theorem Let pn be a poly of degree at most n that
interpolates f at n + 1 evenly spaced points in [a, b] with x0 = a and xn = b. Then
for a ≤ x ≤ b we have

|f(x)− p(x)| ≤ 1

4(n+ 1)
Mhn+1

where h = b−a
n

is the point spacing and M = maxa≤z≤b

∣∣∣f (n+1) (z)
∣∣∣

This theorem is often easier to apply to examples.

Example 18.5 (interpolating sin). Say we interpolate f(x) = sin(x) at n+ 1 points
in [0, π], then ∣∣f(x)− pn(x)

∣∣ ≤ 1

4(n+ 1)
Mhn+1 =

hn+1

4(n+ 1)

Since h = π/n, we have ∣∣f(x)− pn(x)
∣∣ ≤ πn+1

nn+1

1

4(n+ 1)

If we use 3 points or n = 2, we have∣∣f(x)− pn(x)
∣∣ ≤ π3

23

1

12
=
π3

96
≈ .32.

Below is a plot of the example for n = 2 and a plot of the error as n → ∞, we see
that the error goes to zero.
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Figure 14: Evenly spaced points interpolation (left) and the error → 0 as n → ∞
(right)
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The previous example shows that using evenly spaced points can work well some-
times. However, there are functions where interpolation on evenly spaced points can
fail spectacularly. This is called Runge phenomena.

Example 18.6 (Runge phenomena). Let f(x) = 1
1+x2

and let [a, b] = [−5, 5]. Then
we have ∣∣f(x)− pn(x)

∣∣ ≤ 1

4(n+ 1)
Mhn+1 =

10n+1M

4(n+ 1)nn+1
.

For odd values of n, we have (check this yourself)

M = max
a≤z≤b

∣∣∣f (n+1)(z)
∣∣∣ ≥ f (n+1)(0) = (n+ 1)!

Hence, ∣∣f(x)− pn(x)
∣∣ ≤ 10n+1(n+ 1)!

4(n+ 1)nn+1
=

10n+1n!

4nn+1
.

Notice that the RHS → ∞ as n → ∞. Our error bound blows up and we get no
good approximation of the function by the interpolating polynomial. Is it possible
that our error bound is just bad? In this case, no. We can see that the interpolant
oscillates with huge oscillations near the boundary.
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Figure 15: Evenly spaced points interpolation experiencing Runge phenomenon (left)
and the error →∞ as n→∞ (right)

18.7 Chebyshev Polynomials and Interpolation on the Cheby-
shev Points (Lecture October 27, 2025)

We now introduce a set of points that will perform much better than evenly spaced
points. These are known as the Chebyshev points, which are the roots of Cheby-
shev polynomials, which are defined on [−1, 1].
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18.7.1 Chebyshev polynomials

We start by introducing the Chebyshev polynomials and showing some basic prop-
erties

Definition 18.2 (Chebyshev polynomials). The nth Chebyshev polynomial Tn is
defined for −1 ≤ x ≤ 1 as

Tn(x) = arccos(n cosx)

At first glance, these appear to not be polynomials. As a matter of fact, they
are. Let’s check the first few

T0(x) = arccos(0) = 1

T1(x) = arccos(cos x) = x

T2(x) = arccos(2 cosx︸︷︷︸
=y

) = 2 cos2 y − 1 = 2x2 − 1

To see that Tn is a polynomial in general, we use the following recursion formula

Lemma 18.1 (recursion formula for Chebyshev polynomials). The Chebyshev poly-
nomials on [−1, 1] satisfy

Tn+1(x) = 2xTn(x)− Tn−1(x).

Since T0, T1 are polynomials, this tells us that Tn is a polynomial for all n.

Proof. Write y = arccosx and use the angle addition formula

cos((n+ 1)y) = cos(ny) cos(y)∓ sin(ny) sin(y).

18.7.2 Chebyshev points for interpolation

On [−1, 1], the n Chebyshev points are defined as the roots of Tn. We now derive
these points

0 = Tn(x) = arccos(n cosx︸︷︷︸
=y

) =⇒ y =
2j + 1

2n
π for i = 0, . . . n− 1
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so the n roots of Tn are

xi = cos

(
2i+ 1

2n
π

)
for i = 0, . . . , n− 1

The values yi can be viewed as evenly spaced over the arc of a semicircle, and xi are
the projection of these points on the x axis. This bunches more points onto the ends
of the interval, which is precisely where evenly spaced points failed last time.

Figure 16: Evenly spaced yi on the circle and their projections onto the x axis giving
the Chebyshev points xi. Notice that the Chebyshev points concentrate near the
edge of the domain.

A key feature of these points is they give better control over the error on the
interval [−1, 1]. We start by showing an important quantity in the first interpolation
error theorem is small.

Lemma 18.2. Let xi be the n+ 1 Chebyshev points on [−1, 1], then∣∣∣∣∣∣
n∏
i=0

(x− xi)

∣∣∣∣∣∣ ≤ 1

2n
for − 1 ≤ x ≤ 1

Combining this with the first interpolation error theorem leads to the following
theorem.

Theorem 18.4 (error of interpolating through Chebyshev points on −1 to 1). Let
xi be the n+ 1 Chebyshev points in [−1, 1], and suppose pn interpolates of through
xi, then ∣∣f(x)− pn(x)

∣∣ ≤ 1

2n(n+ 1)!
M

where M = max−1≤x≤1 |f (n+1)(x)|.
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18.7.3 Chebyshev interpolation on different intervals

Notice that the whole discussion has focused on the interval [−1, 1]. What happens
when want to interpolate through f on a different interval? We can use all our
previous work and just introduce a change of coordinates.

Let x̂ be a value in [−1, 1] and define

x =
b− a

2
x̂+

b+ a

2
.

Notice that this is change of coordinates from [−1, 1] to [a, b]. To use the new
Chebyshev points, all we have to do is interpolate through the transformed points

xi =
b− a

2
x̂i +

b+ a

2
, where x̂i = cos

(
2i+ 1

2n
π

)
for i = 0, . . . , n− 1.

These new points will give us a reasonable set of points to interpolate through. What
is the error in this case? All we need to do is try to transform our interpolation
problem on [a, b] to [−1, 1].

Theorem 18.5 (Chebyshev interpolation error on arbitrary interval). Let f be n+1
times continuously differentiable on [a, b] and suppose pn interpolates f through the
n+ 1 Chebyshev points on [a, b]. The interpolation error for any a ≤ x ≤ b satisfies

|f(x)− pn(x)| ≤
(
b− a

2

)(
b− a

4

)n
1

(n+ 1)!
M

where M = max−1≤x≤1

∣∣∣f (n+1)(x)
∣∣∣

Proof. We prove this by transforming our problem to be a new problem on [−1, 1]
and applying the previous theorem. Define

f̂(x̂) = f
(
b−a
2
x̂+ b+a

2

)
p̂n(x̂) = pn

(
b−a
2
x̂+ b+a

2

)
Notice that p̂n interpolates f̂ through the n+ 1 Chebyshev points on [−1, 1] Hence,
we can apply our interpolation error theorem for Chebyshev interpolation on [−1, 1]
to get ∣∣∣f̂(x̂)− p̂n(x̂)

∣∣∣ ≤ 1

2n(n+ 1)!
max
−1≤x̂≤1

∣∣∣∣∣ dn+1

dx̂n+1
f̂(x̂)

∣∣∣∣∣
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The LHS satisfies ∣∣∣f̂(x̂)− p̂n(x̂)
∣∣∣ =

∣∣f(x)− pn(x)
∣∣ ,

which is what we want. The RHS can be dealt with via chain rule. Notice that if

f̂(x̂) = f (x) for x =
b− a

2
x̂+

b+ a

2
.

Taking one derivative with respect to x̂ and applying chain rule yields

d

dx̂
f̂(x̂) = f ′ (x)

b− a
2

for x =
b− a

2
x̂+

b+ a

2
.

Repeating this n+ 1 times yields

dn+1

dx̂n+1
f̂(x̂) = f (n+1) (x)

(
b− a

2

)n+1

for x =
b− a

2
x̂+

b+ a

2
.

Inserting to the initial bound, we have

∣∣f(x)− pn(x)
∣∣ ≤ 1

2n(n+ 1)!

(
b− a

2

)n+1

max
a≤x≤b

∣∣∣f (n+1) (x)
∣∣∣ =

(
b− a

2

)(
b− a

4

)n
1

(n+ 1)!
M

which finishes the proof.

Remark 18.2. A common strategy with numerical methods is to implement and
study the method on some reference interval like [−1, 1]. To implement the method
for more general situations, we need coordinate transformations to transform the
problem back to the original interval. We often need chain rule to analyze the
method on the new interval. Be careful with chain rule as it can often get tricky.

Let’s now see how Chebyshev compares with evenly spaced interpolation for an
example.

Example 18.7. Say f(x) = sinx, a = 0, b = π. Then
∣∣f(x)− pn(x)

∣∣ 6 π
2
·(

π
4

)n 1
(n+1)!

Using 3 points or n = 2, we have

∣∣f(x)− pn(x)
∣∣ 6 π

2

(
π

4

)2
1

3!
≈ 0.16

Here, using the Chebyshev points only gives a modest improvement over evenly
spaced points.
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Figure 17: Interpolation of f(x) = sin x using Chebyshev points.

However, for functions like f(x) = 1
1+x2

, using the Chebyshev points is much
more accurate and will converge.
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Figure 18: Interpolation of the Runge example f(x) = 1/(1 + x2), a = −5, b = 5
using the Chebyshev points. We expect the Chebyshev interpolants to converge as
n→∞. Above are plots showing computational evidence of this.
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