COMPUTATIONAL PDE LECTURE 14

LUCAS BOUCK

1. OUTLINE OF TODAY

e Start finite differences for the heat equation.

2. FINITE DIFFERENCE METHODS FOR THE HEAT EQUATION

u(t, ) — uge(t,x) = f(t,x), te€(0,1),z€(0,1)
(1) u(t,0) = 0,u(t,1) =0
u(0,z) = ug(x)

2.1. Time stepping schemes. We now list with various time stepping schemes for
the heat equation, which you implemented in recitation:

e Forward Euler (approximates differential equation at ¢;_;)
D, U’ + AMU/! = 77!
e Backward Euler (approximates differential equation at ;)
D, U’ + A"U’ = £/

e Crank Nicolson (approximates differential equation at ti1= Tt +tj-1))
D, U’ + §Ah(UJ + U = 9712

2.2. Stability: discrete energy estimates. The other key ingredient is stability.
We’ll mimic the energy estimates from the continuous heat equation. We first start
with Backward Euler:

Proposition 2.1 (unconditional stability of Backward Euler). Let U’ be the se-
quence of solutions to the Backward Euler scheme:

D, U/ + AMUY =7,
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then the vector U7 satisfies the following discrete energy estimate:

J J

2) U5+ ) [T”UJHZAh U =05, U o + ) TIE1I5,,
1

J= J=1

where
N-1
VI, =" hvE vl = hvTAlv.
=1

Remark 2.1 (discrete norms). Note that we have the following Riemann sum ap-
proximation:

N-1 1
HM&zZﬁWﬂﬁz/u@@Mp
i=1 0

I claim that the A" norm for a vector is a Riemann sum approximation of the square
integral of a derivative

1
WM%%/MM%@WW
0

To see this, we compute

N-1
mﬂPh—Ethtxq(‘“%@Fﬂ+2www»—uwamn>
Ah — 7 L
i=1

h2

We observe that this is a Riemann sum approximation for:

1
Wﬂb%—AU%JWM%@M,

and we integrate by parts to get:

1 1
WNL%—/u%wmwmwmz/hM%@Wx
0 0

As a result, the estimate ([2|) can be viewed as a discrete analog to the energy estimates
we have proved in earlier lectures:

/01 u(T, z)dz + /OT /01 ug(t, z)?dr < /01 (0, 2)2dz + /OT /01 {60

The additional term:
J

S - U,

J=1
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is known as numerical dissipation. This term shows that the numerical method
dissipates more energy than expected from the PDE. This is ok because

U/ — U/ = 7D, U/ = O(7),
and
107 = U8, | = o),
j=1
so this extra dissipation is small.

Proof of Discrete Energy Estimate. Just to mimic the continuous case, we take a dot
product of the discrete evolution equation with hU’ to get

hU? - DU’ + | U7 |55 = RUY - £/

We write out the first term

. ) h_ . ) )
U DU = S0 (U - U,
T
and use the following fact for vectors:
1 1
a-(a—b)=_fali - 5 Ibl3+
Hence, with a = U7, and b = U’~!, we have

, - h (1 __. 1. 1, ;
w0 D00 = 2 (L - U+ g - U )
T

1

Slla— b3,

4 DN R TR
= 2 (GIV - 51U+ 5107 - U, ).

The discrete equation now reads

Vil - Lome, o Yy wige s i e
—{ SIUMZn = SIU s + SIU = U, ) + U o = AU - £
T\ 2 2 2

We estimate the RHS using Young’s inequality

i A . 1
WU =Ry UM < 2SO0+ () = 5 (1018, + €13,
=1 =1

Just like in the proof of energy estimates for the heat equation, we need a Poincare
inequality:
112 112
IO Mz0 < 107140,
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which we will prove in the next Lemma. Once we have the above inequality, the

discrete equation is now an inequality:

1

1 1 o | | 1
 (GIVIR — S0 07— U0, ) U B < SO B + SR,

1
2
Subtracting ||U7||3, from both sides and multiplying both sides by 2 leads to
1 . - . - . .
~ (013, = 103 + 107 = U, ) + U7 < D91,

Finally, multiplying by 7 and summing from j = 1,...,J yields
J J

J
> (I8, = 0 E,) + D0 iU s + 107 = U, < D7l

Jj=1 Jj=1 J=1

Notice the sum on the LHS telescopes:

J
> (715 = 1107 3,) = 071, — 0"

J=1

2
2,h»

which gives the result. 0

The important Poincare inequality lemma we need is a property of the matrix A"

X(N—

Lemma 2.1 (eigenvalues of A"). The eigenvalues of A* € RW—1) D are

4 kmh
A = 7 sin’ (%) k=1,...,N—1
with eigenvectors

vF = sin(knz;).

Proof. Left as exercise to verify that
1 k k k k
e <_V7Z—1 +2vi — Vi-i—l) = AkV;

A consequence of this property is that we have a discrete Poincare inequality:

Lemma 2.2 (discrete Poincare inequality). For any vector v, we have

4
IVI5n < Mllvizs < IVIAs < Avalivi, < 75lvi

2
2,h°
In particular, we have

IVIZn < IvIiAn
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Proof. The inequality A; > 1 is not entirely obvious, so we prove it. Note that

2
2 . (7h
A= (ﬁ sin (7>) ,

so it is sufficient to prove that %sin <7r—2h> > 1. This is true, but we only sketch the

idea. As h — 0, we have that hy = h/2 — 0 and by the limit definition of derivative:
.2 . (mh\ . sin(why) B
}lg% 5 Sin (7) = }ILI_% h mcos(0) = 7.

Hence, at least for sufficiently small A, we expect A\; > 1. [l
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