
COMPUTATIONAL PDE LECTURE 14

LUCAS BOUCK

1. Outline of today

• Start finite differences for the heat equation.

2. Finite Difference Methods for the Heat Equation

(1)


ut(t, x)− uxx(t, x) = f(t, x), t ∈ (0, 1), x ∈ (0, 1)

u(t, 0) = 0, u(t, 1) = 0

u(0, x) = u0(x)

2.1. Time stepping schemes. We now list with various time stepping schemes for
the heat equation, which you implemented in recitation:

• Forward Euler (approximates differential equation at tj−1)

DτU
j + AhUj−1 = f j−1

• Backward Euler (approximates differential equation at tj)

DτU
j + AhUj = f j

• Crank Nicolson (approximates differential equation at tj− 1
2

= 1
2
(tj + tj−1))

DτU
j +

1

2
Ah(Uj + Uj−1) = f j−1/2

2.2. Stability: discrete energy estimates. The other key ingredient is stability.
We’ll mimic the energy estimates from the continuous heat equation. We first start
with Backward Euler:

Proposition 2.1 (unconditional stability of Backward Euler). Let Uj be the se-
quence of solutions to the Backward Euler scheme:

DτU
j + AhUj = f j,
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then the vector Uj satisfies the following discrete energy estimate:

(2) ‖UJ‖22,h +
J∑
j=1

[
τ‖UJ‖2Ah + ‖Uj −Uj−1‖22,h

]
≤ ‖U0‖2,h +

J∑
j=1

τ‖f j‖22,h

where

‖v‖22,h =
N−1∑
i=1

hv2
i , ‖v‖2Ah = hvTAhv.

Remark 2.1 (discrete norms). Note that we have the following Riemann sum ap-
proximation:

‖uj‖22,h =
N−1∑
i=1

hu(tj, xi)
2 ≈
ˆ 1

0

u(tj, x)2dx.

I claim that the Ah norm for a vector is a Riemann sum approximation of the square
integral of a derivative

‖uj‖2Ah ≈
ˆ 1

0

|ux(tj, x)|2dx.

To see this, we compute

‖uj‖2Ah =
N−1∑
i=1

hu(tj, xi)

(
−u(tj, xi−1) + 2u(tj, xi)− u(tj, xi+1)

h2

)
We observe that this is a Riemann sum approximation for:

‖uj‖2Ah ≈ −
ˆ 1

0

u(tj, x)uxx(tj, x)dx,

and we integrate by parts to get:

‖uj‖2Ah ≈ −
ˆ 1

0

u(tj, x)uxx(tj, x)dx =

ˆ 1

0

|ux(tj, x)|2dx

As a result, the estimate (2) can be viewed as a discrete analog to the energy estimates
we have proved in earlier lectures:ˆ 1

0

u(T, x)2dx+

ˆ T

0

ˆ 1

0

ux(t, x)2dx ≤
ˆ 1

0

u(0, x)2dx+

ˆ T

0

ˆ 1

0

f(t, x)2dx

The additional term:
J∑
j=1

[
‖Uj −Uj−1‖22,h

]
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is known as numerical dissipation. This term shows that the numerical method
dissipates more energy than expected from the PDE. This is ok because

Uj −Uj−1 = τDτU
j = O(τ),

and
J∑
j=1

[
‖Uj −Uj−1‖22,h

]
= O(τ),

so this extra dissipation is small.

Proof of Discrete Energy Estimate. Just to mimic the continuous case, we take a dot
product of the discrete evolution equation with hUj to get

hUj ·DτU
j + ‖Uj‖2Ah = hUj · f j

We write out the first term

hUj ·DτU
j =

h

τ
Uj ·

(
Uj −Uj−1

)
,

and use the following fact for vectors:

a · (a− b) =
1

2
‖a‖22 −

1

2
‖b‖22 +

1

2
‖a− b‖22.

Hence, with a = Uj, and b = Uj−1, we have

hUj ·DτU
j =

h

τ

(
1

2
‖Uj‖22 −

1

2
‖Uj−1‖22 +

1

2
‖Uj −Uj−1‖22

)
=

1

τ

(
1

2
‖Uj‖22,h −

1

2
‖Uj−1‖22,h +

1

2
‖Uj −Uj−1‖22,h

)
.

The discrete equation now reads

1

τ

(
1

2
‖Uj‖22,h −

1

2
‖Uj−1‖22,h +

1

2
‖Uj −Uj−1‖22,h

)
+ ‖Uj‖2Ah = hUj · f j

We estimate the RHS using Young’s inequality

hUj · f j = h
N−1∑
i=1

Uj
i f
j
i ≤

h

2

N−1∑
i=1

(Uj
i )

2 + (f ji )2 =
1

2

(
‖Uj‖22,h + ‖f j‖22,h

)
Just like in the proof of energy estimates for the heat equation, we need a Poincare
inequality:

‖Uj‖22,h ≤ ‖Uj‖2Ah ,
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which we will prove in the next Lemma. Once we have the above inequality, the
discrete equation is now an inequality:

1

τ

(
1

2
‖Uj‖22,h −

1

2
‖Uj−1‖22,h +

1

2
‖Uj −Uj−1‖22,h

)
+ ‖Uj‖2Ah ≤

1

2
‖Uj‖2Ah +

1

2
‖f j‖22,h

Subtracting 1
2
‖Uj‖2

Ah from both sides and multiplying both sides by 2 leads to

1

τ

(
‖Uj‖22,h − ‖Uj−1‖22,h + ‖Uj −Uj−1‖22,h

)
+ ‖Uj‖2Ah ≤ ‖f j‖22,h

Finally, multiplying by τ and summing from j = 1, . . . , J yields

J∑
j=1

(
‖Uj‖22,h − ‖Uj−1‖22,h

)
+

J∑
j=1

τ‖Uj‖2Ah + ‖Uj −Uj−1‖22,h ≤
J∑
j=1

τ‖f j‖22,h

Notice the sum on the LHS telescopes:

J∑
j=1

(
‖Uj‖22,h − ‖Uj−1‖22,h

)
= ‖UJ‖22,h − ‖U0‖22,h,

which gives the result. �

The important Poincare inequality lemma we need is a property of the matrix Ah.

Lemma 2.1 (eigenvalues of Ah). The eigenvalues of Ah ∈ R(N−1)×(N−1) are

λk =
4

h2
sin2

(
kπh

2

)
, k = 1, . . . , N − 1

with eigenvectors

vki = sin(kπxi).

Proof. Left as exercise to verify that

1

h2

(
−vki−1 + 2vki − vki+1

)
= λkv

k
i

�

A consequence of this property is that we have a discrete Poincare inequality:

Lemma 2.2 (discrete Poincare inequality). For any vector v, we have

‖v‖22,h ≤ λ1‖v‖22,h ≤ ‖v‖2Ah ≤ λN−1‖v‖22,h ≤
4

h2
‖v‖22,h.

In particular, we have

‖v‖22,h ≤ ‖v‖2Ah
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Proof. The inequality λ1 ≥ 1 is not entirely obvious, so we prove it. Note that

λ1 =

(
2

h
sin

(
πh

2

))2

,

so it is sufficient to prove that 2
h

sin
(
πh
2

)
≥ 1. This is true, but we only sketch the

idea. As h→ 0, we have that h2 = h/2→ 0 and by the limit definition of derivative:

lim
h→0

2

h
sin

(
πh

2

)
= lim

h→0

sin (πh2)

h2
= π cos(0) = π.

Hence, at least for sufficiently small h, we expect λ1 ≥ 1. �


	1. Outline of today
	2. Finite Difference Methods for the Heat Equation
	2.1. Time stepping schemes
	2.2. Stability: discrete energy estimates


