COMPUTATIONAL PDE LECTURE 13

LUCAS BOUCK

1. OUTLINE OF TODAY

e Start finite differences for the heat equation.

2. FINITE DIFFERENCE METHODS FOR THE HEAT EQUATION

ur(t, ) — uge(t,z) = f(t,x), te(0,1),z € (0,1)
(1) u(t,0) = 0,u(t,1) =0
u(0,x) = ug(x)
We now begin the discussion of finite difference methods for the heat equation. We
begin with the setup:
e 1z, = jh spatial grid points h = 1/N
e t; = j7 time grid points 7 =T /M
o Grid Grp = {t;}Ly x {zi}iY,
e Grid function U7 : Gr.n— R
To highlight the role of time stepping, we denote U7 € RV~! as the vector of U™"
evaluated at interior grid points, i.e.
U = UM (t,2;) fori=1,...,N—1
and the negative second finite difference for U"7(¢;, z;) will be denoted by
2
!

A= 7%=

so that '
(AhU])i = —DiUh’T(tj, ilfl)
We finally denote the a finite difference in time as

h,T t. ) — h,T ti ;
DTUh’T(tj,xi): U (va) U (J 1,$>

T
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2.1. Time stepping schemes. We now list with various time stepping schemes for
the heat equation, which you implemented in recitation:

e Forward Euler (approximates differential equation at ¢;_;)
DU/ + AU/ =7t
e Backward Euler (approximates differential equation at ¢;)
DU/ + AMU/ =/
e Crank Nicolson (approximates differential equation at ti1= Tt + 1))

) 1 . ) )
D, U’ + §Ah(Uﬂ + U = 12

2.2. Consistency: truncation Errors. Recall that there are two ingredients to
demonstrating convergence for finite difference schemes, which were:

e Consistency,
e Stability.

Typically it is easier to show consistency using Taylor expansion.
Proposition 2.1 (consistency of schemes). Let u solve ([). Then w} = u(t;,z;)
satisfies
e Forward Euler

D,w + At =71 ¢ Tih’fe
e Backward Euler

D,w + Al =7 + ‘rih’be

e Crank Nicolson

c1 , , , A
D.w + §Ah(u] +u'l) = £IH1/2 4

,h.cn
where there is a constant C' > 0 such that the truncation errors satisfy:
177 selloo < C (Tlugeloo + 12 tgaas] o)
Hﬁ,h,@“oo < C (tluslco + h*[tszze|co)
172 enlloe < C (Pl co + 72 [tasitlco + h|tsrrz|co0)

and

|Uttt|00 = Inax |Utt(t7ﬂf)‘, |uttt’00 = max |Uttt(ta37)|7 ‘u:t:caca:|CO = max ’Umm(t,ﬂ?ﬂ
t,z€[0,1] t ] t,z€[0,1]

) )



COMPUTATIONAL PDE LECTURE 13 3

Proof. Recall that we have already shown:
U(tj, xiﬂ) — 2U<tj, .’13Z) + U(t]’, :Uifl)
52
We have seen in HW?2 for a backward difference formula
U(tj, 33'1) — U(tjfl, SL'@)
T

uwx(tja wz) - S Ch2|uazxzx|00'

Ut(tj—laxi) — < CT‘utthO-

Note that we picked to evaluate the time derivative of u at t;_;. For backward Euler,
we’d want to look at wu(t;, ;). Thus, from HW2, we have the following truncation
errors for each time derivative approximation

t; i) t;— s L
Forward Euler : |u:(t;_1,2;) — ulty, 25) = ultjoa, 24) < C7lug| o
t; i) ti— s L
Backward Euler : |u(t;, ;) — ulty, i) — ult1, 7:) < C7lugg|co
T
b, Ti) — ultj—1, T
Crank Nicolson : |u((t; +tj-1)/2,2;) — ullyy i) = ultj-1, 1) < O ugy|co
T

The proof is complete for Forward Euler and Backward Euler.
Notice that Crank Nicolson is a centered difference approximation of u; at the
midpoint between ¢; and ¢;_;. So far we have shown for CN:

Dru(ty, ;) — %Di (u(ty, @) + ultj-1, 2:)) =ue(ty1y2, i) — % (o (tj, 1) + taa (tj—1, ) + (T )i
=uy(tj_1/2, T5) — Uaa(tj—1/2, 1) + i + (T 0
= F(tj-1/2, ) + @iy + (T 1 on)i
where '
||7~'?z,r,cn||oo < C7%|ugst|co + Ch*|tggss|co
and

1
Qij = Ugg(tj_1/2,75) — B ( ax(tj, Ti) + Uga(tj—1, sz)) .

To complete the proof of the truncation error for CN, one can show using Taylor
expansion that

’ai,j‘ < 7—2|ua:ztt|00a
which will be left as a HW problem. O
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