COMPUTATIONAL PDE LECTURE 12

LUCAS BOUCK

1. OUTLINE OF TODAY

e Finish separation of variables
e Start finite differences

2. NEUMANN BOUNDARY CONDITIONS
This section address what happens when we have homogenous Neumann boundary
conditions:
u(t, ) — uge(t,x) =0, t>0,2€(0,1)
(1) uz(t,0) = 0,u,(t,1) =0
u(0,z) = up(x)

We again write the solution as

z) = ZTk<t)Xk x

where X}, is a different function than Xj(x) = sin(krz). This is because X}, does
not satisfy the boundary conditions X(0) = X} (1) = 0. Plugging u into the heat
equation yields

> (T8 K@) - TH) X () = 0.
k=1
Solving for each individual k brings us back to

T Xi) s
T Xi(x) "
where ), is a constant. Therefore, we need to solve the eigenvalue problem
X"(z) = AX(z) =0
{X'(o) = X'(1)=0

(2)

We now go over how to solve these eigenvalue problems.
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Proposition 2.1. The values A\, = —(kn)? and X;(z) = cos(krz) for k=0, ... are
the only nonzero solutions to the Neumann eigenvalue problem .

Proof. We break the proof into 2 cases. .
Case 1. Suppose X, \ solvg WitNh A > 0. Then we have that A\ = a? for some
a > 0. Then the solution to X” = a%X is

X (z) = 1€ + cpe7

Notice that X'(0) = ¢1a — cza, so in order to satisfy X’(0) = 0, we require ¢; = ¢y.
If this is the case, then X'(0) = ciae® — cyae™® = cia(e® — e~*). The only way for
cra(e® —e @) =0 for a > 0 is if ¢; = 0. Thus, X(z) = 0. Hence there cannot be a
nonzero eigenfunction with A > 0.

Case 2: Suppose X, \ solve with A < 0. Then we have that A = —a? for some
a > 0. The solution to X” = —a?X is

X(x) = ¢1 cos(az) + ¢y sin(az).
To satisfy the boundary conditions, we require

0= X'(0) = —acysinta0) + acy cos(ald) = acy
0 = X'(0) = —acy sin(a) + ac; cos(a)
To solve the first equation, we require a = 0 or ¢, = 0.
If a =0, then
X(z) =¢
is a constant. Since we do not care about the constant scaling of an eigenvector, we
take ¢; = 1. }
If @ > 0, then ¢y, =, and we require —ac; sin(a) = 0. In order for X # 0, we need
sin(a) = 0, and the only solutions for @ > 0 are a = 7k for k =1,....

In conclusion, the only nonzero X to solve are A\, = —(kn)? and X,(z) =
cos(kmx) for k= 0,..., which concludes the proof. O

This same procedure of breaking the eigenvalue into cases A > 0 and A < 0 can
also show the following

Proposition 2.2. The values A\, = —(k7)? and Xy(z) = sin(knz) for k = 1,... are
the only nonzero solutions to the Dirichlet eigenvalue problem:

X"(x) — AX(2) =0
3) {X(O) —X(1)=0

Proof. This will be a homework problem. U
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Remark 2.1 (general procedure). The general procedure for separation of variables
for the following problem
u(t, ) — aug, (t, ) + buy(t, ) + cu(t,x) =0, t>0,2 € (0,1)
aug(t,0) + Bu(t,0) = 0, quy(t, 1) + fu(t,1) =0
u(0,z) = ug(x)
o Write .
u(t, z) = ZTk(t)Xk(l’)-
k=0
e Solve Eigenvalue problem
—aX](z) + bX}(z) + cXi(x) — M Xi(z) =0,
aX.(0) + X,(0) = 0,aX,(1) + BXk(1) =0

e Compute Fourier coefficients of ug:

t>0,z€(0,1)

N  (uo, Xa) Jy wo(@) Xi(w)da
)= 2 ) T e

e Solve initial value problems for Tj:
T];(t) = /\ka(t), Tk(O) = Ck
Remark 2.2 (spectral methods). There is a class of numerical methods, called

spectral methods, that build off of separation of variables. The idea is as follows
e Write the approximate solution as

UN(t,x) =) Tel(t) Xi(x)

where X, is the basis from our eigenvalue problem
e Approximate the initial condition
N
up (2) =Y e Xi()
k=0
e Use a time stepping method to solve the system of ODEs for T}.

If the underlying solution is smooth, i.e. u € C'* has infinitely many continuous
derivatives, we can expect exponential convergence of the method. That is, the
truncation error is

™ =0(™)
Additionally, the coefficients ¢, can be computed with a Fast Fourier Transform in
O(Nlog N) time (compared with solving a linear system, which is O(N?) time).
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Spectral methods are very efficient and accurate if the underlying solution is
smooth.
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