COMPUTATIONAL PDE LECTURE 12

LUCAS BOUCK

1. Outline of today

- Finish separation of variables
- Start finite differences

2. Neumann boundary conditions

This section address what happens when we have homogenous Neumann boundary conditions:

(1)
$$
\begin{cases} u_t(t,x) - u_{xx}(t,x) = 0, \quad t > 0, x \in (0,1) \\ u_x(t,0) = 0, u_x(t,1) = 0 \\ u(0,x) = u_0(x) \end{cases}
$$

We again write the solution as

$$
u(t,x) = \sum_{k=1}^{\infty} T_k(t) \tilde{X}_k(x)
$$

where \tilde{X}_k is a different function than $X_k(x) = \sin(k\pi x)$. This is because X_k does not satisfy the boundary conditions $X'_k(0) = X'_k(1) = 0$. Plugging u into the heat equation yields

$$
\sum_{k=1}^{\infty} \left(T'_k(t) \tilde{X}_k(x) - T_k(t) \tilde{X}_k''(x) \right) = 0.
$$

Solving for each individual k brings us back to

$$
\frac{T'_k(t)}{T_k(t)} = \frac{X''_k(x)}{X_k(x)} = \tilde{\lambda}_k
$$

where $\tilde{\lambda}_k$ is a constant. Therefore, we need to solve the eigenvalue problem

(2)
$$
\begin{cases} \tilde{X}''(x) - \tilde{\lambda}\tilde{X}(x) = 0 \\ \tilde{X}'(0) = \tilde{X}'(1) = 0 \end{cases}
$$

We now go over how to solve these eigenvalue problems.

Date: September 25, 2023.

2 LUCAS BOUCK

Proposition 2.1. The values $\tilde{\lambda}_k = -(k\pi)^2$ and $\tilde{X}_k(x) = \cos(k\pi x)$ for $k = 0, \ldots$ are the only nonzero solutions to the Neumann eigenvalue problem [\(2\)](#page-0-0).

Proof. We break the proof into 2 cases.

Case 1: Suppose \tilde{X} , $\tilde{\lambda}$ solve [\(2\)](#page-0-0) with $\tilde{\lambda} > 0$. Then we have that $\tilde{\lambda} = a^2$ for some $a > 0$. Then the solution to $\tilde{X}^{\prime\prime} = a^2 \tilde{X}$ is

$$
\tilde{X}(x) = c_1 e^{ax} + c_2 e^{-ax}.
$$

Notice that $\tilde{X}'(0) = c_1 a - c_2 a$, so in order to satisfy $\tilde{X}'(0) = 0$, we require $c_1 = c_2$. If this is the case, then $\tilde{X}'(0) = c_1 a e^a - c_1 a e^{-a} = c_1 a (e^a - e^{-a})$. The only way for $c_1a(e^a - e^{-a}) = 0$ for $a > 0$ is if $c_1 = 0$. Thus, $\tilde{X}(x) = 0$. Hence there cannot be a nonzero eigenfunction with $\tilde{\lambda} > 0$.

Case 2: Suppose \tilde{X} , $\tilde{\lambda}$ solve [\(2\)](#page-0-0) with $\tilde{\lambda} \leq 0$. Then we have that $\tilde{\lambda} = -a^2$ for some $a \geq 0$. The solution to $\tilde{X}'' = -a^2 \tilde{X}$ is

$$
\tilde{X}(x) = c_1 \cos(ax) + c_2 \sin(ax).
$$

To satisfy the boundary conditions, we require

$$
0 = \tilde{X}'(0) = -ac_1 \sin(a\theta) + ac_2 \cos(a\theta) = ac_2
$$

$$
0 = \tilde{X}'(0) = -ac_1 \sin(a) + ac_2 \cos(a)
$$

To solve the first equation, we require $a = 0$ or $c_2 = 0$.

If $a = 0$, then

$$
\tilde{X}(x) = c_1
$$

is a constant. Since we do not care about the constant scaling of an eigenvector, we take $c_1 = 1$.

If $a > 0$, then $c_2 =$, and we require $-ac_1 \sin(a) = 0$. In order for $\tilde{X} \neq 0$, we need $\sin(a) = 0$, and the only solutions for $a > 0$ are $a = \pi k$ for $k = 1, \ldots$.

In conclusion, the only nonzero \tilde{X} to solve [\(2\)](#page-0-0) are $\tilde{\lambda}_k = -(k\pi)^2$ and $\tilde{X}_k(x) =$ $\cos(k\pi x)$ for $k = 0, \ldots$, which concludes the proof.

This same procedure of breaking the eigenvalue into cases $\lambda > 0$ and $\lambda \leq 0$ can also show the following

Proposition 2.2. The values $\lambda_k = -(k\pi)^2$ and $X_k(x) = \sin(k\pi x)$ for $k = 1, \ldots$ are the only nonzero solutions to the Dirichlet eigenvalue problem:

(3)
$$
\begin{cases} X''(x) - \lambda X(x) = 0 \\ X(0) = X(1) = 0 \end{cases}
$$

Proof. This will be a homework problem. \square

Remark 2.1 (general procedure). The general procedure for separation of variables for the following problem

$$
\begin{cases}\n u_t(t, x) - au_{xx}(t, x) + bu_x(t, x) + cu(t, x) = 0, \quad t > 0, x \in (0, 1) \\
 \alpha u_x(t, 0) + \beta u(t, 0) = 0, \alpha u_x(t, 1) + \beta u(t, 1) = 0 \\
 u(0, x) = u_0(x)\n\end{cases}
$$

• Write

$$
u(t,x) = \sum_{k=0}^{\infty} T_k(t) X_k(x).
$$

• Solve Eigenvalue problem

$$
\begin{cases}\n- aX_k''(x) + bX_k'(x) + cX_k(x) - \lambda_k X_k(x) = 0, \quad t > 0, x \in (0, 1) \\
\alpha X_k'(0) + \beta X_k(0) = 0, \alpha X_k'(1) + \beta X_k(1) = 0\n\end{cases}
$$

• Compute Fourier coefficients of u_0 :

$$
u_0(x) = \sum_{k=0}^{\infty} c_k X_k(x), \quad c_k = \frac{\langle u_0, X_k \rangle}{\langle X_k, X_k \rangle} = \frac{\int_0^1 u_0(x) X_k(x) dx}{\int_0^1 |X_k(x)|^2 dx}
$$

• Solve initial value problems for T_k :

$$
T'_{k}(t) = \lambda_{k} T_{k}(t), \quad T_{k}(0) = c_{k}
$$

Remark 2.2 (spectral methods). There is a class of numerical methods, called spectral methods, that build off of separation of variables. The idea is as follows

• Write the approximate solution as

$$
U^{N}(t,x) = \sum_{k=0}^{N} T_k(t) X_k(x)
$$

where X_k is the basis from our eigenvalue problem

• Approximate the initial condition

$$
u_0^N(x) = \sum_{k=0}^N \tilde{c}_k X_k(x)
$$

• Use a time stepping method to solve the system of ODEs for T_k .

If the underlying solution is smooth, i.e. $u \in C^{\infty}$ has infinitely many continuous derivatives, we can expect *exponential convergence* of the method. That is, the truncation error is

$$
\boldsymbol{\tau}^N = \mathcal{O}(e^{-N})
$$

Additionally, the coefficients \tilde{c}_k can be computed with a Fast Fourier Transform in $\mathcal{O}(N \log N)$ time (compared with solving a linear system, which is $\mathcal{O}(N^3)$ time).

4 LUCAS BOUCK

Spectral methods are very efficient and accurate if the underlying solution is smooth.