COMPUTATIONAL PDE LECTURE 11

LUCAS BOUCK

1. OUTLINE OF TODAY

e Explain separation of variables for different boundary conditions and right hand
side

2. SEPARATION OF VARIABLES

Last time we have considered:

wu(t, ) — gy (t ,x) 0, t>0,z€(0,1)
(1) u(t,0) = u(t, 1) =
u(0,z) = uo(x)
and have shown that .
u(t,z) = chTk(t)Xk(x)
k=1

solves the boundary conditions and differential equation in (|1|) where
Ti(t) = e~ X, (t) = sin(knz).

and
~ {uo, Xi) fo ug(z) sin(krz)dz

1
Cp = =2 up(z) sin(kmx)dx.
(X X fo sin?(krx)dx /0 ol) sinfkma)

We now address what happens with more general situations.

2.1. Right hand side f: Suppose we need to solve.

u(t, ) — uge(t,z) = f(t,x), ¢t>0,z€(0,1)
(2) u(t,0) =u(t,1) =0

u(0,x) = ug(x)
We can reduce this into solving the 2 problems.

e w solves (2) with f =0 and wuy # 0.
e v solves ([2) with ug =0 and f # 0.
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The sum u = v + w then solves . We have previously discussed how to solve for
w. We now discuss how to solve for v.

o We write
v(t,x) = ZTk(t)Xk(x),
k=1

where X (x) = sin(knz) from before.
e We also write the Fourier series for f:

Ft2)Y  an(t) Xi().

e The heat equation now looks like

S (T + PET() Xi(2) = ar(t) Xi(x)

e We then solve each ODE initial value problem:
T (t) + 72 k* Ty (t) = ar(t), Ti(t) =0
separately.
Using the example from recitation, if
f(t,x) = sin(rz),
then a;(t) = 1, and ax(¢t) = 0 for all £ > 1. Then,

) = - (1 - e*“2t> ,

2
and

v(t,x) = % (1 — e‘”Qt) sin(mx)

2.2. Different boundary conditions. There are two separate cases we will con-
sider with different boundary conditions.

2.2.1. Nonhomogenous boundary conditions. Consider the situation where
u(t, ) — uge(t,z) = f(t,x), t>0,2€(0,1)

(3) u(t,0) = up(t), u(t, 1) = u,(t)
u(0,x) = ug(x)

with uo(0) = ue(0) and ug(1) = u,(0). To solve for u, we write

g(t,x) = ue(t)(1 — ) + u.(t)x
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and solve for v = u — g, where v solves

vt x) — vt z) = f(t,x) — g1t 2) + gerdtsT), t>0,2 € (0,1)

v(t,0) =0,u(t,1) =0

v(0, ) = uo(z) — 9(0,2)
and apply the procedure from the previous section to solve for v. Then u = v + g is
the solution to .

2.2.2. Neumann boundary conditions. This section address what happens when we
have homogenous Neumann boundary conditions:

u(t, ) — uge(t,x) =0, t>0,2€(0,1)
(4) uz(t,0) = 0,u,(t,1) =0

u(0,z) = up(x)

We again write the solution as

where X}, is a different function than Xk( ) = sin(kwz). This is because X} does
not satisfy the boundary conditions X(0) = X} (1) = 0. Plugging u into the heat

equation yields
oo

> (T %) - T XL () =0,
k=1
Solving for each individual k brings us back to

T X
Ti(t)  Xiw) "
where ), is a constant. Therefore, we need to solve the eigenvalue problem
X"(z) = XX (z) =0
(5) v/ _ Y/ _
X'(0)=X'(1)=0

We now go over how to solve these eigenvalue problems.

Proposition 2.1. The values \; = —(km)? and X;(z) = cos(krz) for k=0, ... are
the only nonzero solutions to the Neumann eigenvalue problem .

Proof. We break the proof into 2 cases.
Case 1. Suppose X, \ solve with A > 0. Then we have that A = a2 for some

a > 0. Then the solution to X” = a2X is

X(z) = 1™ + coe™ .
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Notice that X'(0) = ¢ia — csa, so in order to satisfy X’(0) = 0, we require ¢; = ¢;.
If this is the case, then X'(0) = ciae® — ciae™® = cia(e® — e~*). The only way for
cra(e® —e @) =0 for a > 0 is if ¢; = 0. Thus, X () = 0. Hence there cannot be a
nonzero eigenfunction with A > 0.

Case 2: Suppose X, \ solve with A < 0. Then we have that A = —a? for some
a > 0. The solution to X" = —a2X is

X (x) = ¢; cos(ax) + ¢y sin(ax).

To satisfy the boundary conditions, we require

0 = X'(0) = —acysir(a0l) + acy cos(al) = acy
0= X'(0) = —acy sin(a) + ac, cos(a)
To solve the first equation, we require a = 0 or ¢, = 0.
If a =0, then )
X(x) =0
is a constant. Since we do not care about the constant scaling of an eigenvector, we
take ¢; = 1. B
If a > 0, then ¢y =, and we require —ac; sin(a) = 0. In order for X # 0, we need
sin(a) = 0, and the only solutions for a > 0 are a = 7k for k =1,. ...

In conclusion, the only nonzero X to solve are \y = —(km)? and Xj(z) =
cos(kmx) for k= 0,..., which concludes the proof. O

This same procedure of breaking the eigenvalue into cases A > 0 and A < 0 can
also show the following

Proposition 2.2. The values Ay = —(k7)? and X, (z) = sin(k7z) for k = 1,... are
the only nonzero solutions to the Dirichlet eigenvalue problem:

X(x) — AX(2) = 0
(6) {X(O) — X(1) =0

Proof. This will be a homework problem. ([l
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