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LUCAS BOUCK

1. Outline of today

• Continue separation of variables

2. Separation of Variables

Last time we have considered:

(1)


ut(t, x)− uxx(t, x) = 0, t > 0, x ∈ (0, 1)

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x)

and have shown that

u(t, x) =
N∑
k=1

ckTk(t)Xk(x)

solves the boundary conditions and differential equation in (1) where

Tk(t) = e−(kπ)
2t, Xk(t) = sin(kπx).

Additionally, if

u0(x) =
N∑
k=1

ck sin(kπx),

then u also satisfies the initial condition.
We now address what if u0 is not the finite sum of sines.

2.1. More general initial conditions: Fourier series. Suppose

u0(x) =
∞∑
k=1

ck sin(kπx),

then

u(t, x) =
N∑
k=1

ckTk(t)Xk(x)
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would formally solve (1). I say formal solution because we have not actually proved
that the infinite series makes sense. We now show a sufficient condition for the
infinite series to make sense.

Lemma 2.1 (Weierstrass M-test). Let fk : [0, 1] → R be a sequence of continuous
functions with Mk = maxx∈[0,1] |fk(x)|. If

∞∑
k=1

Mk <∞,

then for any x, the series
∞∑
k=1

fk(x)

converges absolutely. Also, define f(x) =
∑∞

k=1 fk(x). We also have that the series
converges uniformly, i.e.

lim
N→∞

max
x∈[0,1]

∣∣∣∣∣∣f(x)−
N∑
k=1

fk(x)

∣∣∣∣∣∣ = 0,

and f is continuous.

Proof. We show that the sequence FN =
∑N

k=1 fk is uniformly Cauchy. Let m ≥ N ,
and we compute∣∣FN(x)− Fm(x)

∣∣ ≤ m∑
k=N+1

|fk(x)| ≤
m∑

k=N+1

Mk ≤
∞∑

k=N+1

Mk

Taking a max over all x leads to

max
x∈[0,1]

∣∣FN(x)− Fm(x)
∣∣ ≤ ∞∑

k=N+1

Mk

and taking a limit as N →∞ shows

lim
N→∞

sup
m≥N

max
x∈[0,1]

∣∣FN(x)− Fm(x)
∣∣ ≤ 0

Hence, FN is uniformly Cauchy, and converges uniformly to some continuous f . �

The relevant result for us is the following

Proposition 2.1. Let {ck}k∈N be a sequence and define:

uN0 (x) =
N∑
k=1

ck sin(kπx)
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If
∞∑
k=1

|ck| <∞,

then uN0 converges uniformly on [0, 1] and the limit is the continuous function

u0(x) =
∞∑
k=1

ck sin(kπx).

2.1.1. Computing the coefficients. Suppose u0 is some continuous function. How do
we find ck such that

u0(x) =
∞∑
k=1

ck sin(kπx)?

The coefficients in this case are known as Fourier coefficients.
We first begin by looking at linear algebra. Given a vector w ∈ Rn what is the

best approximation v∗ ∈ V, where V ⊂ Rn is a subset of Rn. We first consider the
Euclidean norm

‖v‖2 =
√

v · v.
Then

‖v∗ −w‖2 = inf
u∈V
‖u−w‖2

if and only if
(v∗ −w) · u = 0 for all u ∈ V.

To see this one direction of the if and only if, we can write

‖v∗ −w‖22 = v∗ · (v∗ −w)−w · (v∗ −w)

= −w · (v∗ −w) = (u−w) · (v∗ −w)

≤ ‖(u−w)‖2‖(v∗ −w)‖2 (Cauchy-Schwarz inequality)

Dividing both sides by ‖(v∗ −w)‖2 shows that

‖v∗ −w‖2 ≤ inf
u∈V
‖u−w‖2.
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The vector v∗ is known as the orthogonal projection of w onto V. Suppose
{vk}mk=1 is an orthogonal basis for V. That is suppose {vk}mk=1 is a basis for V and
vk · vj = 0 for all j 6= k. Then, we write

v∗ =
m∑
k=1

akv
k

and subtract w and take a dot product with vj to get

0 = (v∗ −w) · vj =

 m∑
k=1

akv
k

 · vj −w · vj

= ak‖vj‖22 −w · vj,

and

ak =
w · vj

‖vj‖22
.

For us, we need to somehow mimic the dot product, but for functions. The relevant
inner product is the L2 inner product:

〈u, v〉 =

ˆ 1

0

u(x)v(x)dx.

and L2 norm:

‖u‖L2[0,1] =
√
〈u, u〉.

Luckily, our sine basis is orthogonal in the L2 inner product.

Lemma 2.2. Let Xk(x) = sin(πkx). Then

〈Xk, Xj〉 =

{
0, j 6= k

1/2, j = k
.

We then have the following approximation result.

Proposition 2.2. Let Xk(x) = sin(πkx). Let u0 be continuous. Then, we define
the Fourier coefficient as

ck =
〈Xk, Xj〉
〈Xk, Xk〉

and the sum

uN0 (x) =
N∑
k=1

ckXk
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is the best L2 approximation of u0 in V = span{Xk}Nk=1. That is,ˆ 1

0

|u0(x)− uN0 (x)|2dx = inf
v∈V

ˆ 1

0

|u0(x)− v(x)|2dx.

Moreover if the coefficients ck satisfy
∞∑
k=1

|ck| <∞,

then uN0 → u0 uniformly.

Remark 2.1 (estimates on Fourier coefficients). The proof of this can be done using
integration by parts.

If u0 ∈ C2(0, 1) with u0(0) = u0(1) = u′0(0) = u′0(1) = 0, then

|ck| ≤
maxx∈[0,1] |u′′0(x)|

k2π2

and
∞∑
k=1

|ck| <∞.

Ultimately, to compute a solution to the heat equation (1), we follow the following
procedure.

• Compute the Fourier coefficients

ck = 2

ˆ 1

0

u0(x) sin(πkx)dx

• Verify that
∞∑
k=1

|ck| <∞

• Write down

u(t, x) =
∞∑
k=1

cke
−(kπ)2t sin(kπx)

and u solves (1).
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