
COMPUTATIONAL PDE LECTURE 9

LUCAS BOUCK

1. Outline of today

• Prove Poincare inequality
• Begin separation of variables.

2. Energy estimates for the heat equation

Recall that last time we proved.

Proposition 2.1 (energy estimate). Let u be a C2 solution to the heat equation
with homogenous Dirichlet boundary conditions.

(1)


ut(t, x)− uxx(t, x) = f(t, x), t > 0 and x ∈ (0, 1)

u(0) = u(1) = 0, (boundary condition)

u(0, x) = u0(x) (initial condition)

Then, for all T > 0, we have

(2)

ˆ 1

0

|u(T, x)|2dx+

ˆ T

0

ˆ 1

0

|ux(t, x)|2dxdt ≤
ˆ 1

0

|u0(x)|2dx+

ˆ T

0

ˆ 1

0

|f(t, x)|2dxdt

A corollary of the energy estimate is that solutions to the heat equation are unique.

Corollary 2.1 (uniqueness of solutions). C2 solutions to (1) are unique.

Proof. Let u1, u2 be C2 solutions to (1). Then the difference v = u1 − u2 solves
vt(t, x)− vxx(t, x) = 0, t > 0 and x ∈ (0, 1)

v(0) = v(1) = 0,

v(0, x) = 0

Applying the energy estimates to v shows v = 0. �

Lemma 2.1 (Poincare’s inequality). Let f ∈ C1[0, 1] satisfy f(0) = 0, thenˆ 1

0

|f(x)|2dx ≤
ˆ 1

0

|f ′(x)|2dx
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Proof. We can write

f(x) = ���f(0) +

ˆ x

0

f ′(y)dy

Taking an absolute value of both sides yields

|f(x)| =
∣∣∣∣ˆ x

0

f ′(y)dy

∣∣∣∣ ≤ ˆ x

0

|f ′(y)|dy ≤
ˆ 1

0

|f ′(y)|dy

Squaring both sides yields:

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

I claim that (ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy.

Note that for two numbers a, b, we have(
1

2
a+

1

2
b

)2

≤ 1

2
a2 +

1

2
b2

because x 7→ x2 is convex. For a Riemann sum at xj = j/2N of some function g, we
have  2N∑

j=1

1

2N
g(xi)

2

≤ 1

2

2N−1∑
j=1

g(xj)

2

+
1

2

 2N∑
j=2N−1+1

1

2N−1
g(xj)

2

.

We can continue recursively to show 1

2N

2N∑
j=1

g(xi)

2

≤ 1

2N

2N∑
j=1

g(xi)
2

The limit of these sums as N →∞ is(ˆ 1

0

g(x)dx

)2

≤
ˆ 1

0

g(x)2dx

Setting g(x) = |f ′(x)| proves the claim. Note that this is a special case of Jensen’s
inequality. We now insert the claim into our inequality

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy
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Taking the max over all x ∈ [0, 1] yields

max
x∈[0,1]

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy

and ˆ 1

0

|f(x)|2dx ≤ max
x∈[0,1]

|f(x)|2 ≤
ˆ 1

0

|f ′(x)|2dx.

�

Remark 2.1 (another version of Poincare). Note that we technically proved a
stronger version of Poincare:

max
x∈[0,1]

|f(x)|2 ≤
ˆ 1

0

|f ′(x)|2dx.

This can be used to prove an alternative stability result for Poisson’s equation without
using maximum principle.

3. Separation of variables

We now construct solutions to the heat equation. We start with

(3)


ut(t, x)− uxx(t, x) = 0, t > 0, x ∈ (0, 1)

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x)

The main idea of separation of variables is to look for solutions of the form

u(t, x) =
N∑
k=1

ckuk(t, x)

where we can separate the variables of each uk:

uk(t, x) = Tk(t)Xk(x).

Importantly, if each uk solves the differential equation in (3), i.e.

∂tuk(t, x)− ∂2xxuk(t, x) = 0,

then u solves the differential equation because:

ut(t, x)− uxx(t, x) =
N∑
k=1

ck∂tuk(t, x)− ∂2xxuk(t, x) = 0.

We have used the fact that the differential equation is linear. This is also known as
the Principle of Superposition.
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We now try to solve for each uk. We plug in uk(t, x) = Tk(t)Xk(x) into the
differential equation to get

∂tuk(t, x)− ∂2xxuk(t, x) = T ′k(t)Xk(x)− Tk(t)X ′′k (x) = 0.

Rearranging the equation leads to

T ′k(t)

Tk(t)
=
X ′′k (x)

Xk(x)
.

Notice that each side of the above equation is equal for all choices of t, x. The
only functions that can satisfy this are constant functions. We’ll let λk denote the
constant such that

T ′k(t)

Tk(t)
=
X ′′k (x)

Xk(x)
= λk,

and we now solve for Xk and Tk separately.
We first solve for X such that

X ′′k (x) = λkXk(x), Xk(0) = Xk(1) = 0.

Note that we enforce the boundary condition on Xk in order for uk and u to satisfy the
boundary conditions. We saw in HW 1, that the possible solutions to this problem
(up to a multiplying constant) are

Xk(x) = sin(kπx), λk = −k2π2.

We can also solve for
T ′k(t) = k2π2Tk(t),

whose solutions are
Tk(t) = Tk(0)e−k

2π2t.

Hence, our candidate solution u is

u(t, x) =
N∑
k=1

ckTk(t)Xk(x) =
N∑
k=1

cke
−k2π2t sin(kπx)

where ck are constants that are to be determined, which we will do next time.
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