
COMPUTATIONAL PDE LECTURE 8

LUCAS BOUCK

1. Outline of today

• Derive the heat equation
• Derive energy estimates of the heat equation

2. Derive the heat equation

We’ll start with deriving the heat equation on the real line. That is the internal
heat energy density u : [0,∞)× R→ R solves

(1) ut(t, x)− kuxx(t, x) = f(t, x).

where f is a heat source or sink. We first start with a point x0 and an interval
(x0 − δ, x0 + δ). We first write the conservation of energy

(total change in energy) = (total energy change from external sources)− (energy leaving)

which can be expressed mathematically as

d

dt

ˆ x0+δ

x0−δ
u(t, x)dx =

ˆ x0+δ

x0−δ
f(t, x)dx− j(t, x0 + δ) + j(t, x0 − δ).

Here, j denotes the heat flux.
We do cannot determine a precise form of the heat flux a priori, but we assume

the heat flux satisfies an empirical law. Specifically, we assume Fourier’s law of
heat, which states there is a constant k > 0 such that

j(t, x) = −kux(t, x).

Intuitively, this means heat flows from hot areas to cold areas. The conservation of
energy now reads:

d

dt

ˆ x0+δ

x0−δ
u(t, x)dx =

ˆ x0+δ

x0−δ
f(t, x)dx+ kux(t, x0 + δ)− kux(t, x0 − δ).
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We now use fundamental theorem of calculus (this would be divergence theorem in
higher dimensions), to write

kux(t, x0 + δ)− kux(t, x0 − δ) =

ˆ x0+δ

x0−δ
kuxx(t, x)dx,

so
d

dt

ˆ x0+δ

x0−δ
u(t, x)dx =

ˆ x0+δ

x0−δ
f(t, x)dx+

ˆ x0+δ

x0−δ
kuxx(t, x)dx.

We also apply Leibniz integral rule to the left hand side to get

d

dt

ˆ x0+δ

x0−δ
u(t, x)dx =

ˆ x0+δ

x0−δ
ut(t, x)dx,

and ˆ x0+δ

x0−δ
ut(t, x)dx =

ˆ x0+δ

x0−δ
f(t, x)dx+

ˆ x0+δ

x0−δ
kuxx(t, x)dx.

Rearranging and dividing both sides by 2δ leads to

1

2δ

ˆ x0+δ

x0−δ
ut(t, x)− kuxx(t, x)dx =

1

2δ

ˆ x0+δ

x0−δ
f(t, x)dx.

Recall that for continuous functions:

lim
δ→0

1

2δ

ˆ x0+δ

x0−δ
f(t, x)dx = f(t, x0),

and we have the heat equation (1).

3. Energy estimates for the heat equation

Recall that for Poissons equation, we answered the following questions:

• Existence and construction of solutions: Green’s functions
• Stability: maximum principle
• Uniqueness of solutions: maximum principle

Today, we’ll address the stability as well as uniqueness of solutions to the heat
equation by looking at what are called energy estimates.

Proposition 3.1 (energy estimate). Let u be a C2 solution to the heat equation
with homogenous Dirichlet boundary conditions.

(2)


ut(t, x)− uxx(t, x) = f(t, x), t > 0 and x ∈ (0, 1)

u(0) = u(1) = 0, (boundary condition)

u(0, x) = u0(x) (initial condition)
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Then, for all T > 0, we have

(3)

ˆ 1

0

|u(T, x)|2dx+

ˆ T

0

ˆ 1

0

|ux(t, x)|2dxdt ≤
ˆ 1

0

|u0(x)|2dx+

ˆ T

0

ˆ 1

0

|f(t, x)|2dxdt

Proof. We begin by multiplying the heat equation by u(t, x) and integrating from
x = 0 to x = 1:ˆ 1

0

ut(t, x)u(t, x)dx−
ˆ 1

0

uxx(t, x)u(t, x)dx =

ˆ 1

0

f(t, x)u(t, x)dx

We now make a few observations about this equation:

• The first time can be written as a pure time derivative using the chain rule and
Leibniz integral rule:ˆ 1

0

ut(t, x)u(t, x)dx =
1

2

ˆ 1

0

∂

∂t
|u(t, x)|2dx =

d

dt

1

2

ˆ 1

0

|u(t, x)|2dx

• Integrating the second term by parts leads to:

−
ˆ 1

0

uxx(t, x)u(t, x)dx =((((
((((−ux(t, 1)u(t, 1) +((((

(((ux(t, 0)u(t, 0) +

ˆ 1

0

ux(t, x)ux(t, x)dx

=

ˆ 1

0

|ux(t, x)|2dx

Thus, our equality is now

d

dt

1

2

ˆ 1

0

|u(t, x)|2dx+

ˆ 1

0

|ux(t, x)|2dx =

ˆ 1

0

f(t, x)u(t, x)dx

• The term on the right hand side can be written in a way that can be controlled by
terms on the left hand side. We first use a fact about real numbers, which is for
any a, b ∈ R, we have

(a− b)2 ≥ 0.

Expanding the quadratic leads to

a2 + b2 − 2ab ≥ 0.

Rearranging this inequality yields what is sometimes called Young’s inequality:

ab ≤ 1

2
a2 +

1

2
b2.

Hence, ˆ 1

0

f(t, x)u(t, x)dx ≤ 1

2

ˆ 1

0

|f(t, x)|2dx+
1

2

ˆ 1

0

|u(t, x)|2dx.



4 LUCAS BOUCK

The other useful inequality is to control the size of u with its derivative ux, which
is known as Poincare’s inequality:ˆ 1

0

|u(t, x)|2dx ≤
ˆ 1

0

|ux(t, x)|2dx,

which we’ll prove later. Using Poincare leads us toˆ 1

0

f(t, x)u(t, x)dx ≤ 1

2

ˆ 1

0

f(t, x)2dx+
1

2

ˆ 1

0

|ux(t, x)|2dx.

Combing all the equalities and estimates yields:

d

dt

1

2

ˆ 1

0

|u(t, x)|2dx+

ˆ 1

0

|ux(t, x)|2dx ≤ 1

2

ˆ 1

0

f(t, x)2dx+
1

2

ˆ 1

0

|ux(t, x)|2dx.

We now absorb the the integral of (ux)
2 onto the left hand side, multiply everything

by 2, and integrate in time from 0 to T :ˆ T

0

d

dt

ˆ 1

0

|u(t, x)|2dxdt+

ˆ T

0

ˆ 1

0

|ux(t, x)|2dxdt ≤
ˆ T

0

ˆ 1

0

f(t, x)2dxdt.

Realizing ˆ T

0

d

dt

ˆ 1

0

|u(t, x)|2dxdt =

ˆ 1

0

|u(T, x)|2dx−
ˆ 1

0

|u(0, x)|2dx

finishes the proof. �

A corollary of the energy estimate is that solutions to the heat equation are unique.

Corollary 3.1 (uniqueness of solutions). C2 solutions to (2) are unique.

Proof. Let u1, u2 be C2 solutions to (2). Then the difference v = u1 − u2 solves
vt(t, x)− vxx(t, x) = 0, t > 0 and x ∈ (0, 1)

v(0) = v(1) = 0,

v(0, x) = 0

Applying the energy estimates to v shows v = 0. �

Lemma 3.1 (Poincare’s inequality). Let f ∈ C1[0, 1] satisfy f(0) = 0, thenˆ 1

0

|f(x)|2dx ≤
ˆ 1

0

|f ′(x)|2dx

Proof. We can write

f(x) =��
�f(0) +

ˆ x

0

f ′(y)dy
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Taking an absolute value of both sides yields

|f(x)| =
∣∣∣∣ˆ x

0

f ′(y)dy

∣∣∣∣ ≤ ˆ x

0

|f ′(y)|dy ≤
ˆ 1

0

|f ′(y)|dy

Squaring both sides yields:

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

I claim that (ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy.

Note that for two numbers a, b, we have(
1

2
a+

1

2
b

)2

≤ 1

2
a2 +

1

2
b2

because x 7→ x2 is convex. For a Riemann sum at xj = j/2N of some function g, we
have  2N∑

j=1

1

2N
g(xi)

2

≤ 1

2

2N−1∑
j=1

g(xj)

2

+
1

2

 2N∑
j=2N−1+1

1

2N−1
g(xj)

2

.

We can continue recursively to show 1

2N

2N∑
j=1

g(xi)

2

≤ 1

2N

2N∑
j=1

g(xi)
2

The limit of these sums as N →∞ is(ˆ 1

0

g(x)dx

)2

≤
ˆ 1

0

g(x)2dx

Setting g(x) = |f ′(x)| proves the claim. Note that this is a special case of Jensen’s
inequality. We now insert the claim into our inequality

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy

Taking the max over all x ∈ [0, 1] yields

max
x∈[0,1]

|f(x)|2 ≤

(ˆ 1

0

|f ′(y)|dy

)2

≤
ˆ 1

0

|f ′(y)|2dy
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and ˆ 1

0

|f(x)|2dx ≤ max
x∈[0,1]

|f(x)|2 ≤
ˆ 1

0

|f ′(x)|2dx.

�

Remark 3.1 (another version of Poincare). Note that we technically proved a
stronger version of Poincare:

max
x∈[0,1]

|f(x)|2 ≤
ˆ 1

0

|f ′(x)|2dx.

This can be used to prove an alternative stability result for Poisson’s equation without
using maximum principle.
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