COMPUTATIONAL PDE LECTURE 5

LUCAS BOUCK

1. Outline of today

- Truncation error of our discretization of Poisson: consistency
- Convergence of the finite difference method assuming stability.

We have been studying

(1)
$$
\begin{cases}\n-u''(x) = f(x) & \text{for } x \in (0,1) \\
u(0) = u_{\ell}, \\
u(1) = u_r\n\end{cases}
$$

for $u_{\ell} = u_r = 0$. The rest of the lecture will cover when u_{ℓ}, u_r are not necessarily 0.

2. Finite Differences Approximation of Poisson

Recall that our main tool for discretizing Poisson's equation was the finite difference approximation:

(2)
$$
D_h^2 f(x) := \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.
$$

Using the above approximation [\(2\)](#page-0-0), we discretized [\(1\)](#page-0-1) with the equation at $x_j = hj$

$$
-D_h^2 U^h(x_j) = -\frac{U^h(x_{j+1}) - 2U^h(x_j) + U^h(x_{j-1})}{h^2} = f(x_j),
$$

and the equations

$$
U^h(x_0) = u_\ell, U^h(x_N) = u_r
$$

Date: September 8, 2023.

2 LUCAS BOUCK

at x_0 and x_{N+1} respectively. Combining the above two conditions leads to the following linear system of equations:

(3) 1 0 . . . − 1 h2 2 ^h² − 1 ^h² 0 0 − 1 h2 2 ^h² − 1 h2 . . . 0 1 | {z } =:A^h U h (x0) U h (x1) . . . U h (xN−1) U h (x^N) | {z } =:U^h = u` f(x1) . . . f(xN−1) ur | {z } f h .

We now begin to analysis this method.

2.1. Truncation error analysis: consistency. By replacing $u''(x_j)$ with $D_h^2 U^h(x_j)$, we are making an approximation. A natural question to ask is how accurate is that approximation in terms of the number of grid points $N + 1$ or the mesh size h. The first step to deriving an estimate for the error $|u(x_j) - U^h(x_j)|$ is to derive the **truncation error** τ^h , which is the error of plugging in the exact solution u into the discrete system [\(3\)](#page-1-0):

$$
\boldsymbol{\tau}^h=\mathbf{f}^h-\mathbf{A}^h\mathbf{u}
$$

where $\mathbf{u}_j = u(x_j)$. Another way of writing the truncation error is $|\boldsymbol{\tau}_j^h| = |u''(x_j) D_h^2 u(x_j)$. We say the discrete system [\(3\)](#page-1-0) is **consistent** with [\(1\)](#page-0-1) if the truncation error $\boldsymbol{\tau}^h$ satisfies

$$
\lim_{h\to 0} \|\boldsymbol{\tau}^h\|_\infty = 0
$$

where

$$
\|\boldsymbol{\tau}^h\|_{\infty}=\max_{0\leq j\leq N+1}|\boldsymbol{\tau}^h_j|
$$

Proposition 2.1 (consistency and truncation error). Suppose u solves is $C^4[0,1]$ and solves [\(1\)](#page-0-1). Then for $1 \leq j \leq N-1$, τ_j^h satisfies

$$
|\boldsymbol{\tau}^h_j|\leq \frac{h^2}{12}\max_{x\in[0,1]}|u^{(4)}(x)|
$$

Proof. The proof relies heavily on Taylor expansion. For $u \in C^4[0,1]$, $x \in (0,1)$, and sufficiently small h , we have

(4)
$$
u(x+h) = u(x) + hu'(x) + \frac{h^2}{2!}u''(x) + \frac{h^3}{3!}u^{(3)}(x) + \frac{h^4}{4!}u^{(4)}(h_1)
$$

where $h_1 \in (x, x + h)$ and

(5)
$$
u(x-h) = u(x) - hu'(x) + \frac{h^2}{2!}u''(x) - \frac{h^3}{3!}u^{(3)}(x) + \frac{h^4}{4!}u^{(4)}(h_2)
$$

 $h_2 \in (x - h, x)$. Adding [\(4\)](#page-1-1) and [\(5\)](#page-1-2) together yields

$$
u(x+h) + u(x-h) = 2u(x) + h^2u''(x) + \frac{h^4}{4!}(u^{(4)}(h_1) + u^{(4)}(h_2)).
$$

Hence,

$$
\frac{u(x+h) - 2u(x) + u(x-h)}{h^2} = u''(x) + \frac{h^2}{4!}(u^{(4)}(h_1) + u^{(4)}(h_2)).
$$

Subtracting $u''(x)$ from both sides and taking absolute value allows us to estimate:

$$
\left| \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} - u''(x) \right| = \left| \frac{h^2}{4!} (u^{(4)}(h_1) + u^{(4)}(h_2)) \right|
$$

$$
\leq \frac{2h^2}{4!} \max_{z \in [0,1]} |u^{(4)}(z)| = \frac{h^2}{12} \max_{z \in [0,1]} |u^{(4)}(z)|
$$

The above estimate is true for any $x \in (0,1)$, so it is true for x_j . Hence

$$
|\boldsymbol{\tau}_j^h| \le \frac{h^2}{12} \max_{z \in [0,1]} |u^{(4)}(z)|
$$

for all j , which is the desired result.

Definition 2.1 (rate of convergence). A convergent sequence $z_N \to z$ as $N \to \infty$ converges with rate α if there is a $c > 0$ such that

$$
|z_N - z| \le c(1/N)^\alpha
$$

Indexing with h, we say a sequence $z_h \to z$ as $h \to 0$ converges with rate α if there is a $c > 0$ such that

$$
|z_h - z| \le ch^\alpha.
$$

Remark 2.1 (rate of convergence of truncation error). We can see that $\boldsymbol{\tau}_j^h \to 0$ with rate 2.

Remark 2.2 (big O notation). We say that $z_h = O(a_h)$ as $h \to 0$ if there is a $h_0, c > 0$ such that

$$
z_h \leq ca_h
$$

for all $h < h_0$. For example, $\boldsymbol{\tau}_j^h = O(h^2)$.

4 LUCAS BOUCK

2.2. Discrete maximum principle: stability. The rest of the discussion will assume $u_r = u_\ell = 0$ though these results can be adapted if $u_r \neq 0$ and $u_\ell \neq 0$, which will be an assignment problem for the continuous problem. The book also presents different proofs based on discrete Green's function.

So far, we have shown that the exact solution u solves the discrete equation with an additional truncation error term that is $O(h^2)$. However, we have so far not said anything about the actual error:

$$
\max_{0 \le j \le N} |u(x_j) - U^h(x_j)|.
$$

What we'll need is a stability result, which we'll prove in Monday's lecture.

Proposition 2.2 (stability of the finite difference scheme). For $u_{\ell} = u_r = 0$, the discrete scheme is stable in the sense that

$$
\max_{0 \le j \le N} |U^h(x_j)| \le \max_{1 \le j \le N} |f(x_j)|
$$

In other words, if $\mathbf{A}^h \mathbf{U}^h = \mathbf{f}^h$, then

$$
\|\mathbf{U}^h\|_\infty\leq \|\mathbf{f}^h\|_\infty
$$

Additionally, the right hand side of the above inequality is independent of h .

We will prove this later. There are two important corollaries of stability. The first is that there exist unique discrete solutions U^h .

Corollary 2.1 (existence and uniqueness of discrete solutions). For $u_{\ell} = u_r = 0$, there exists a unique \mathbf{U}^h such that solves the system of linear equations [\(3\)](#page-1-0)

Proof. Since A^h is a square matrix, existence of solutions to [\(3\)](#page-1-0) is equivalent to uniqueness of solutions by the Fundamental Theorem of Linear Algebra. To show uniqueness let $\mathbf{U}^h, \mathbf{V}^h$ solve

$$
\mathbf{A}^h \mathbf{U}^h = \mathbf{f}^h, \quad \mathbf{A}^h \mathbf{V}^h = \mathbf{f}^h.
$$

Subtracting these two equations yields

$$
\mathbf{A}^h(\mathbf{U}^h-\mathbf{V}^h)=\mathbf{0}.
$$

Applying the stability result shows that

$$
\|\mathbf{U}^h-\mathbf{V}^h\|_\infty\leq\|\mathbf{0}\|_\infty
$$

and $\mathbf{U}^h = \mathbf{V}^h$. . В последните последните последните последните последните последните последните последните последните последн
В 1990 година от селото на сел

Theorem 2.1 (convergence and error estimate). Let $u_{\ell} = u_r = 0$. Let $u \in C^4[0, 1]$ be a solution of [\(1\)](#page-0-1) and let U^h be a solution of [\(3\)](#page-1-0), then we have

$$
\max_{0 \le j \le N} |u(x_j) - U^h(x_j)| \le \frac{h^2}{12} \max_{x \in [0,1]} |u^{(4)}(x)|
$$

Proof. Let $\mathbf{U}_j^h = U^h(x_j)$, which is the solution to

$$
\mathbf{A}^h \mathbf{U}^h = \mathbf{f}^h.
$$

Let $\mathbf{u}_j = u(x_j)$ be the vector of the exact solution u evaluated at x_j . We saw that **u** solves

$$
\mathbf{A}^h \mathbf{u} = \mathbf{f}^h + \boldsymbol{\tau}^h,
$$

where τ^h is the truncation error and

$$
\|\boldsymbol{\tau}^h\|_{\infty} \leq \frac{h^2}{12} \max_{z \in [0,1]} |u^{(4)}(z)|.
$$

Consider the error vector $e^h = u - U^h$. By subtracting the equations for u and U^h , we see that

$$
\mathbf{A}^h \mathbf{e}^h = \boldsymbol{\tau}^h.
$$

We apply the stability result to the above problem to see that

$$
\max_{0 \le j \le N} |u(x_j) - U^h(x_j)| = ||e^h||_{\infty} \le ||\tau^h||_{\infty}.
$$

Recall the truncation error satisfies:

$$
\|\tau^h\|_{\infty} \le \frac{h^2}{12} \max_{x \in [0,1]} |u^{(4)}(x)|,
$$

so

$$
\max_{0 \le j \le N} |u(x_j) - U^h(x_j)| \le \frac{h^2}{12} \max_{x \in [0,1]} |u^{(4)}(x)|.
$$

which is the desired error estimate.

Remark 2.3 (Lax postulate). The lecture today shows an important principle of numerical methods for linear differential equations:

Consistency + Stability \implies Convergence

Another name for this is the Lax equivalence theorem.