
COMPUTATIONAL PDE LECTURE 5

LUCAS BOUCK

1. Outline of today

• Truncation error of our discretization of Poisson: consistency
• Convergence of the finite difference method assuming stability.

We have been studying

(1)


−u′′(x) = f(x) for x ∈ (0, 1)

u(0) = u`,

u(1) = ur

,

for u` = ur = 0. The rest of the lecture will cover when u`, ur are not necessarily 0.

2. Finite Differences Approximation of Poisson

Recall that our main tool for discretizing Poisson’s equation was the finite differ-
ence approximation:

(2) D2
hf(x) :=

f(x+ h)− 2f(x) + f(x− h)

h2
.

Using the above approximation (2), we discretized (1) with the equation at xj = hj

−D2
hU

h(xj) = −U
h(xj+1)− 2Uh(xj) + Uh(xj−1)

h2
= f(xj),

and the equations

Uh(x0) = u`, U
h(xN) = ur
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at x0 and xN+1 respectively. Combining the above two conditions leads to the fol-
lowing linear system of equations:

(3)


1 0 . . .
− 1
h2

2
h2
− 1
h2

0 . . .
. . . . . . . . .

. . . 0 − 1
h2

2
h2
− 1
h2

. . . 0 1


︸ ︷︷ ︸

=:Ah


Uh(x0)
Uh(x1)

...
Uh(xN−1)
Uh(xN)


︸ ︷︷ ︸

=:Uh

=


u`

f(x1)
...

f(xN−1)
ur


︸ ︷︷ ︸

fh

.

We now begin to analysis this method.

2.1. Truncation error analysis: consistency. By replacing u′′(xj) withD2
hU

h(xj),
we are making an approximation. A natural question to ask is how accurate is that
approximation in terms of the number of grid points N + 1 or the mesh size h.
The first step to deriving an estimate for the error |u(xj)− Uh(xj)| is to derive the
truncation error τ h, which is the error of plugging in the exact solution u into the
discrete system (3):

τ h = fh −Ahu

where uj = u(xj). Another way of writing the truncation error is |τ hj | = |u′′(xj) −
D2
hu(xj)|. We say the discrete system (3) is consistent with (1) if the truncation

error τ h satisfies

lim
h→0
‖τ h‖∞ = 0

where

‖τ h‖∞ = max
0≤j≤N+1

|τ hj |

Proposition 2.1 (consistency and truncation error). Suppose u solves is C4[0, 1]
and solves (1). Then for 1 ≤ j ≤ N − 1, τ hj satisfies

|τ hj | ≤
h2

12
max
x∈[0,1]

|u(4)(x)|

Proof. The proof relies heavily on Taylor expansion. For u ∈ C4[0, 1], x ∈ (0, 1), and
sufficiently small h, we have

(4) u(x+ h) = u(x) + hu′(x) +
h2

2!
u′′(x) +

h3

3!
u(3)(x) +

h4

4!
u(4)(h1)

where h1 ∈ (x, x+ h) and

(5) u(x− h) = u(x)− hu′(x) +
h2

2!
u′′(x)− h3

3!
u(3)(x) +

h4

4!
u(4)(h2)
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h2 ∈ (x− h, x). Adding (4) and (5) together yields

u(x+ h) + u(x− h) = 2u(x) + h2u′′(x) +
h4

4!
(u(4)(h1) + u(4)(h2)).

Hence,

u(x+ h)− 2u(x) + u(x− h)

h2
= u′′(x) +

h2

4!
(u(4)(h1) + u(4)(h2)).

Subtracting u′′(x) from both sides and taking absolute value allows us to estimate:∣∣∣∣u(x+ h)− 2u(x) + u(x− h)

h2
− u′′(x)

∣∣∣∣ =

∣∣∣∣∣h24!
(u(4)(h1) + u(4)(h2))

∣∣∣∣∣
≤ 2h2

4!
max
z∈[0,1]

|u(4)(z)| = h2

12
max
z∈[0,1]

|u(4)(z)|

The above estimate is true for any x ∈ (0, 1), so it is true for xj. Hence

|τ hj | ≤
h2

12
max
z∈[0,1]

|u(4)(z)|

for all j, which is the desired result. �

Definition 2.1 (rate of convergence). A convergent sequence zN → z as N → ∞
converges with rate α if there is a c > 0 such that

|zN − z| ≤ c(1/N)α

Indexing with h, we say a sequence zh → z as h → 0 converges with rate α if there
is a c > 0 such that

|zh − z| ≤ chα.

Remark 2.1 (rate of convergence of truncation error). We can see that τ hj → 0 with
rate 2.

Remark 2.2 (big O notation). We say that zh = O(ah) as h → 0 if there is a
h0, c > 0 such that

zh ≤ cah

for all h < h0. For example, τ hj = O(h2).
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2.2. Discrete maximum principle: stability. The rest of the discussion will
assume ur = u` = 0 though these results can be adapted if ur 6= 0 and u` 6= 0, which
will be an assignment problem for the continuous problem. The book also presents
different proofs based on discrete Green’s function.

So far, we have shown that the exact solution u solves the discrete equation with
an additional truncation error term that is O(h2). However, we have so far not said
anything about the actual error:

max
0≤j≤N

|u(xj)− Uh(xj)|.

What we’ll need is a stability result, which we’ll prove in Monday’s lecture.

Proposition 2.2 (stability of the finite difference scheme). For u` = ur = 0, the
discrete scheme is stable in the sense that

max
0≤j≤N

|Uh(xj)| ≤ max
1≤j≤N

|f(xj)|

In other words, if AhUh = fh, then

‖Uh‖∞ ≤ ‖fh‖∞
Additionally, the right hand side of the above inequality is independent of h.

We will prove this later. There are two important corollaries of stability. The first
is that there exist unique discrete solutions Uh.

Corollary 2.1 (existence and uniqueness of discrete solutions). For u` = ur = 0,
there exists a unique Uh such that solves the system of linear equations (3)

Proof. Since Ah is a square matrix, existence of solutions to (3) is equivalent to
uniqueness of solutions by the Fundamental Theorem of Linear Algebra. To show
uniqueness let Uh,Vh solve

AhUh = fh, AhVh = fh.

Subtracting these two equations yields

Ah(Uh −Vh) = 0.

Applying the stability result shows that

‖Uh −Vh‖∞ ≤ ‖0‖∞
and Uh = Vh. �

The second important corollaries is the desired error estimate:
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Theorem 2.1 (convergence and error estimate). Let u` = ur = 0. Let u ∈ C4[0, 1]
be a solution of (1) and let Uh be a solution of (3), then we have

max
0≤j≤N

|u(xj)− Uh(xj)| ≤
h2

12
max
x∈[0,1]

|u(4)(x)|

Proof. Let Uh
j = Uh(xj), which is the solution to

AhUh = fh.

Let uj = u(xj) be the vector of the exact solution u evaluated at xj. We saw that u
solves

Ahu = fh + τ h,

where τ h is the truncation error and

‖τ h‖∞ ≤
h2

12
max
z∈[0,1]

|u(4)(z)|.

Consider the error vector eh = u−Uh. By subtracting the equations for u and Uh,
we see that

Aheh = τ h.

We apply the stability result to the above problem to see that

max
0≤j≤N

|u(xj)− Uh(xj)| = ‖eh‖∞ ≤ ‖τ h‖∞.

Recall the truncation error satisfies:

‖τ h‖∞ ≤
h2

12
max
x∈[0,1]

|u(4)(x)|,

so

max
0≤j≤N

|u(xj)− Uh(xj)| ≤
h2

12
max
x∈[0,1]

|u(4)(x)|.

which is the desired error estimate. �

Remark 2.3 (Lax postulate). The lecture today shows an important principle of
numerical methods for linear differential equations:

Consistency + Stability =⇒ Convergence

Another name for this is the Lax equivalence theorem.
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