COMPUTATIONAL PDE LECTURE 4

LUCAS BOUCK

1. OUTLINE OF TODAY

e Finish discussion of Maximum principle
e Finite difference solution of Poisson’s equation in 1D

2. UNIQUENESS OF SOLUTION: MAXIMUM PRINCIPLE

This discussion is parallel to Chapter 2.1.3 in the textbook, but will provide alter-
native proofs. The proofs in Chapter 2.1.3 of the textbook use the Green’s function.
Recall we have been studying Poisson’s equation 1 dimension:

—u'(x) = f(z) forx € (0,1)
(1) {U(O) =u(l)=0 ’
and proved

Proposition 2.1 (maximum principle). Let u be a twice continuously differentiable
function such that

—u"(z) > 0 for x € (0,1),
u(0),u(1) >0
Then u(x) > 0 for all z € [0, 1].

A consequence of the maximum principle is that the problem is stable as in the
size of the solution u can be upper bounded by the size of |f|.

Corollary 2.1 (stability). Suppose f is continuous on [0,1]. Let u solve (I)). Then
u satisfies

<
max lu(z)| < max | f(z)]

Proof. Let M = max,ejoq1|f(x)|. We break the proof into showing an upper bound
u(z) < M and lower bound —M < u(z).
Step 1 (upper bound on u): Let w(z) = Mxz(1 — x). The function w satisfies

0 <w(z) <M and w'(z) = —2M
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for all z € [0,1]. We define u(x) = w(x) — u(z). Note that @(x) solves
—i"(z) = —w"(x) — f(x) =2M — f(x) > 0 for z € (0,1)
@(0) = w(0) =0 and @(1) = w(1) = 0.

Applying maximum principle to @ means @(z) > 0 and

u(z) <w(x) <M
for all z € [0,1].
Step 2 (lower bound on u): To show —M < u(z) for all z € [0, 1], define
w(z) = u(zr) + w(zx)
and repeat the arguments of Step 1 for . O

Corollary 2.2 (uniqueness of solutions). Let wuy,us be twice continuously differen-
tiable solutions to (I)). Then u(x) = us(z) for all z € [0, 1].

Proof. Let v = u; — us. Then v solves
—v"(x) =0 for z € (0, 1),
v(0) =v(1)=0
Apply the stability result to v to show v = 0. U

Remark 2.1. There are two important points the proof of stability and uniqueness.

e If a linear differential equation only has terms containing ', u”, then adding con-
stant like C' to u will not change the fact that u solves the differential equation.
Though u 4+ C may not satisfy the Dirichlet or Robin BC.

e For differential equations, we have the following general pattern:

Linear differential equation + stability = unique solutions

3. FINITE DIFFERENCES

Time permitting, we’ll will start the discussion of finite differences.
Given a function f, how do we approximate it’s derivative? From calculus, we
remember the limit definition of derivative:

oy Jl@+h) = f(z)
f'(x) = lim - ;

h—0

which states that the tangent slope is the limit of the secant slopes.
The idea behind a finite difference is that although we may not know f’, we can
approximate it by fixing h > 0 rather than taking a limit:
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The above formula is what we call a forward finite difference. We could also look

at
f'(x) s f(.?f) _i(x_h)7

which would be a backward finite difference. Averaging these two approximations
leads a centered finite difference:

oy L feth)—fl@)  fla)—fle—h)\ _ flat+h) —flz-h)
f(x)’ﬁ( h - h )_ oh |

How might we construct a finite difference approximation for f”(x)? First, let’s
consider applying a forward finite difference to f'(z):

f”(x) ~ f/(‘T + h}z — f/(l')
We don’t know f’(x) or f'(z + h) but further use the approximations:

oy L) = Sl =)

h
[+ h) =

(backward difference)

flz+h) = f(2)
h
Subtracting these two approximations leads to

fle+h)—2f(z) + f(z - h)
! h) — f'(x) =~ .
Fa+h) ~ f@) :
Further dividing by h gives us a potential approximation for the second derivative:

(2) f”(:)j) ~ f(x—i_h)_z];(f)—i_f(x_h) —. sz(l‘)

The above approximation will be our main tool for solving numerically.

(backward difference)

3.1. Finite difference approximation of Poisson’s equation. We now apply
to approximate . We first start with a
e mesh or grid of N + 1 evenly spaced points on the interval [0, 1] as z; = % for
i=0,...,N.
e mesh size as h = %
o U:{x; };ﬁgl — R is an unknown grid function that will approximate wu.
At a point z; for 0 < j < N + 1, we replace u”(z;) with DiU(z;). As a result, we
replace
—u"(z;) = f(z;)
with
Ulwj1) = 2U(x;) + Ulzj—1)

DU () = - - = f(x;)
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At xg, xn11, we replace the boundary condition
u(0),u(l) =0
with
U(zo),U(xy) =0.

Combining the above two conditions leads to the following linear system of equations:

1 0 U(fﬁo) 0
e Ulzy) f(x1)
0 —% 2 —%||U@yv) flzn-1)
0 1 U(IEN) 0
N :‘rA 7\ :‘EJ' ‘fr

We can then solve AU = f using a linear algebra solver like Gaussian elimination.

3.2. Truncation error analysis: consistency. By replacing u”(z;) with DU (x;),
we are making an approximation. A natural question to ask is how accurate is that
approximation in terms of the number of grid points N + 1 or the mesh size h.
The first step to deriving an estimate for the error |u(z;) — U(x;)| is to derive the
truncation error 7", which is the error of plugging in the exact solution u into the
discrete system :

" =f— Au
where u; = u(z;). Another way of writing the truncation error is |7/ = |u"(2;) —
Diu(z;)|. We say the discrete system (3) is consistent with (] if the truncation

error 7" satisfies

lim ||7"]|oe = 0
h—0

where

h _ h
7)o = , a7

Proposition 3.1 (consistency and truncation error). Suppose u solves is C*[0, 1]
and solves . Then for 1 < j < N, T]h satisfies

2

h
h (4)
751 < 12 selo] [ (@)

Proof. The proof relies heavily on Taylor expansion. For u € C*[0,1], z € (0,1), and
sufficiently small A, we have

2 3
h b s

(4) w(x +h) = u(z) + h'(z) + au”(x) + o h”

(z) + ar (h1)
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where hy € (z,2 + h) and

/ h2 " h3 3 h4 4
(5) w(z —h) = u(x) — hu'(z) + oIk (x) — yu( )(x) + IU( )(hQ)
hy € (x — h,z). Adding and together yields
4

u(z + h) +u(z — h) = 2u(z) + h*u"(z) + h (u® (hy) + u® (hy)).

4!
Hence,

-9 — 2
Subtracting u”(z) from both sides and taking absolute value allows us to estimate:

u(z +h) = 2u(z) + u(z —h) U”(x)‘ -
h2

h2 4 4
T ) + 0 (k)

212
= (4)
< Zme[gff]\u (2)]

h? (4)
= g nax [ut™ (2)]

The above estimate is true for any z € (0,1), so it is true for ;. Hence

2

h
ho< (4)
7= 35 max [ut™ (2)]

for all 7, which is the desired result. U

Definition 3.1 (rate of convergence). A convergent sequence zy — z as N — oo
converges with rate « if there is a ¢ > 0 such that

oy — 2| < ¢(1/N)*

Indexing with h, we say a sequence z, — z as h — 0 converges with rate « if there
is a ¢ > 0 such that
|z — z| < ch®.

Remark 3.1 (rate of convergence of truncation error). We can see that Tjh — 0 with
rate 2.
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