
COMPUTATIONAL PDE LECTURE 3

LUCAS BOUCK

1. Outline of today

• Finish discussion of Green’s functions
• Maximum principle

2. Green’s Functions

Recall we have been studying Poisson’s equation 1 dimension:

(1)

{
−u′′(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = 0
.

We also showed that if u solves (1), then u takes the form

(2) u(x) =

ˆ 1

0

G(x, y)f(y)dy

where

(3) G(x, y) =
[
x(1− y)−max{(x− y), 0}

]
=

{
x(1− y), x < y

y(1− x) y ≤ x

is known as a Green’s function.
Note that our derivation assumed we had a solution of (1) to start. We now will

double check that (2) is indeed a solution of (1).
A useful tool for showing this is Leibniz integral rule.

Lemma 2.1 (Leibniz integral rule). Let a, b : R → R and g : R × R → R be
continuously differentiable. Then

(4)
d

dx

ˆ b(x)

a(x)

g(x, y)dy = g(x, b(x))b′(x)− g(x, a(x))a′(x) +

ˆ b(x)

a(x)

∂

∂x
g(x, y)dy.
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Remark 2.1 (special cases of Leibniz integral rule). One special case of this rule is
a version of fundamental theorem of calculus. If a is constant b(x) = x and g does
not depend on x, then

d

dx

ˆ x

a

g(y)dy = g(x),

Another special case of Leibniz integral rule is if a, b do not depend on x, then,

(5)
d

dx

ˆ b

a

g(x, y)dy =

ˆ b

a

∂

∂x
g(x, y)dy,

which we’ll use when we study the heat equation.

We’ll be unrigorous and apply (5) twice to u in (2) and compute:

u′(x) =

ˆ 1

0

∂

∂x
G(x, y)f(y)dy and u′′(x) =

ˆ 1

0

∂2

∂x2
G(x, y)f(y)dy

Recall that G is

G(x, y) =

{
x(1− y), x < y

y(1− x) y ≤ x
.

The partial derivative of G with respect to x is

∂

∂x
G(x, y) =


(1− y) x < y

undefined y = x

y y < x

.

Notice that the jump from in ∂xG from x < y to y < x is −1. Taking another
derivative G with respect to x is

∂2

∂x2
G(x, y) = −δ(x−y) =


0 x < y

−∞ y = x

0 y < x

.

Here, δ is a Dirac delta function and is not a true function. Though we define its
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integral with a continuous function f as
ˆ 1

0

δ(x− y)f(y)dy = f(x).

We then have

−u′′(x) = −
ˆ 1

0

∂2

∂x2
G(x, y)︸ ︷︷ ︸

=−δ(x−y)

f(y)dy = f(x).

This can all be made more rigorous by splitting the integral of

u(x) =

ˆ 1

0

G(x, y)f(y)dy

into

u(x) =

ˆ 1

0

G(x, y)f(y)dy =

ˆ x

0

y(1− x)f(y)dy +

ˆ 1

x

x(1− y)f(y)dy

and apply Leibniz integral rule to each piece.

Proposition 2.1. Let f : [0, 1]→ R be continuous on [0, 1], then u as defined in (2)
is twice continuously differentiable and solves (1)

Proof. We split the proof into two steps.
Step 1: boundary condition: Check that u(0) = u(1) = 0 in the next homework.
Step 2: differential equation:

To verify −u′′(x) = f(x) for 0 < x < 1, write

u(x) =

ˆ 1

0

G(x, y)f(y)dy =

ˆ x

0

y(1− x)f(y)dy +

ˆ 1

x

x(1− y)f(y)dy

and apply Leibniz integral rule. We then compute

d

dx

ˆ x

0

y(1− x)f(y)dy = x(1− x)f(x) +

ˆ x

0

−yf(y)dy,

d

dx

ˆ 1

x

x(1− y)f(y)dy = −x(1− x)f(x) +

ˆ 1

x

(1− y)f(y)dy.

Adding the above terms together shows

u′(x) =

ˆ x

0

−yf(y)dy +

ˆ 1

x

(1− y)f(y)dy

The rest of the computation will be part of the homework. �
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3. Uniqueness of solution: maximum principle

This discussion is parallel to Chapter 2.1.3 in the textbook, but will provide alter-
native proofs. The proofs in Chapter 2.1.3 of the textbook use the Green’s function.

We’ll now prove what is known as the weak maximum principle, which is the
following statement.

Proposition 3.1 (maximum principle). Let u be a twice continuously differentiable
function such that

−u′′(x) > 0 for x ∈ (0, 1),

u(0), u(1) ≥ 0

Then u(x) ≥ 0 for all x ∈ [0, 1].

Picture of maximum principle: Since −u′′(x) > 0, we have that u′′(x) < 0 for
all x, and u must be concave down on [0, 1]. The picture of the function is below
in black. We now suppose that a red function ũ solves the above problem and has
ũ(x0) < 0. Since ũ(0), ũ(1) ≥ 0, then ũ must turn upwards at some point and thus
be concave up, which would contradict ũ′′(x) < 0.

Physical intuition of maximum principle: Poisson’s equation can also de-
scribe the distribution of heat in a room. If u stands for heat, then u(0), u(1) are
the outside temperature. If −u′′(x) = f(x), the f stands for the heat source, like
a furnace. If f(x) > 0 everywhere, then we are heating the room from the inside.
Maximum principle states that the coldest part of the room must be the walls.
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Proof. (By contradiction). The proof follows the picture. Suppose there is an x0 such
that u(x0) < 0. Then, there must be an interior minimum. That is there must be
an x∗ such that u(x∗) ≤ u(y) for all y. Consequently, u′′(x∗) ≥ 0 and −u′′(x∗) ≤ 0.
However, −u′′(x∗) > 0, hence we have a contradiction and there cannot be an x0
such that u(x0) < 0. �

A consequence of the maximum principle is that the problem is stable as in the size
of the solution u can be upper bounded by the size of |f |.

Corollary 3.1 (stability). Suppose f is continuous on [0, 1]. Let u solve (1). Then
u satisfies

max
x∈[0,1]

|u(x)| ≤ max
x∈[0,1]

|f(x)|

Proof. Let M = maxx∈[0,1] |f(x)|. We break the proof into showing an upper bound
u(x) ≤M and lower bound −M ≤ u(x).
Step 1 (upper bound on u): Let w(x) = Mx(1− x). The function w satisfies

0 ≤ w(x) ≤M and w′′(x) = −2M

We define ũ(x) = w(x)− u(x). Note that ũ(x) solves

−ũ′′(x) = −w′′(x)− f(x) = 2M − f(x) > 0 for x ∈ (0, 1)

ũ(0) = w(0) = 0 and ũ(1) = w(1) = 0.

Applying maximum principle to ũ means ũ(x) ≥ 0 and

u(x) ≤ w(x) ≤M

for all x ∈ [0, 1].
Step 2 (lower bound on u): To show −M ≤ u(x) for all x ∈ [0, 1], define

û(x) = u(x) + w(x)



6 LUCAS BOUCK

and repeat the arguments of Step 1 for û. Note that û(x) solves

−û′′(x) = −u′′(x)− w′′(x) = f(x) + 2M > 0 for x ∈ (0, 1)

û(0) = w(0) = 0 and û(1) = w(1) = 0.

We can then apply maximum principle to û to get for all x ∈ [0, 1]:

û(x) ≥ 0

and
u(x) ≥ −w(x) ≥ −M,

which is the desired lower bound. �

Corollary 3.2 (uniqueness of solutions). Let u1, u2 be twice continuously differen-
tiable solutions to (1). Then u1(x) = u2(x) for all x ∈ [0, 1].

Proof. Let v = u1 − u2. Then v solves

−v′′(x) = 0 for x ∈ (0, 1),

v(0) = v(1) = 0

Applying the stability result to v shows

max
x∈[0,1]

|v(x)| ≤ 0

Hence, v(x) = 0 for all x ∈ [0, 1] and u1 = u2. �

Remark 3.1. There are two important points the proof of stability and uniqueness.

• If a linear differential equation only has terms containing u′, u′′, then adding con-
stant like C to u will not change the fact that u solves the differential equation.
Though u+ C may not satisfy the Dirichlet or Robin BC.
• For differential equations, we have the following general pattern:

Linear differential equation + stability = unique solutions
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