
COMPUTATIONAL PDE LECTURE 6

LUCAS BOUCK

1. Outline of today

• Discrete maximum principle and stability
• Handling Neumann boundary conditions

We have been studying

(1)


−u′′(x) = f(x) for x ∈ (0, 1)

u(0) = u`,

u(1) = ur

,

for u` = ur = 0.

2. Finite Differences Approximation of Poisson

Recall that our main tool for discretizing Poisson’s equation was the finite differ-
ence approximation:

(2) D2
hf(x) :=

f(x + h)− 2f(x) + f(x− h)

h2
.

Using the above approximation (2), we discretized (1) with the equation at xj = hj

−D2
hU

h(xj) = −Uh(xj+1)− 2Uh(xj) + Uh(xj−1)

h2
= f(xj),

and the equations

Uh(x0) = u`, U
h(xN) = ur
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at x0 and xN+1 respectively. Combining the above two conditions leads to the fol-
lowing linear system of equations:

(3)


1 0 . . .
− 1

h2
2
h2 − 1

h2 0 . . .
. . . . . . . . .

. . . 0 − 1
h2

2
h2 − 1

h2

. . . 0 1


︸ ︷︷ ︸

=:Ah


Uh(x0)
Uh(x1)

...
Uh(xN−1)
Uh(xN)


︸ ︷︷ ︸

=:Uh

=


u`

f(x1)
...

f(xN−1)
ur


︸ ︷︷ ︸

fh

.

What we’ll need is a stability result, which we’ll prove in Monday’s lecture.

Proposition 2.1 (stability of the finite difference scheme). For u` = ur = 0, the
discrete scheme is stable in the sense that

max
0≤j≤N

|Uh(xj)| ≤ max
1≤j≤N

|f(xj)|

In other words, if AhUh = fh, then

‖Uh‖∞ ≤ ‖fh‖∞
Additionally, the right hand side of the above inequality is independent of h.

The important consequence of stability was the error estimate:

Theorem 2.1 (convergence and error estimate). Let u` = ur = 0. Let u ∈ C4[0, 1]
be a solution of (1) and let Uh be a solution of (3), then we have

max
0≤j≤N

|u(xj)− Uh(xj)| ≤
h2

12
max
x∈[0,1]

|u(4)(x)|

2.0.1. Discrete maximum principle and proof of stability.

Lemma 2.1 (discrete maximum principle). Let Uh be the discrete solution to (3),
and assume ur, u` ≥ 0 and f(x) > 0 for all x ∈ [0, 1]. Then, Uh(xj) ≥ 0 for all
j = 0, . . . , N .

Proof. The proof follows similarly to that of the continuous problem. We proceed by
contradiction. Suppose there is an j0 ∈ {1, . . . , N − 1} such that Uh(xj0) < 0. There
then exists a J ∈ {1, . . . , N − 1} such that Uh(xJ) < 0 and Uh(xJ) ≤ Uh(xj) for all
j ∈ {0, . . . , N}. We now look compute −D2

hU
h(xJ):

−D2
hU

h(xJ) =
−Uh(xJ+1) + 2Uh(xJ)− Uh(xJ−1)

h2
.

Since Uh(xJ) ≤ Uh(xJ±1), we have

−Uh(xJ+1) + 2Uh(xJ)− Uh(xJ−1)

h2
≤ −U

h(xJ+1) + Uh(xJ+1) + Uh(xJ−1)− Uh(xJ−1)

h2
= 0.
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Hence, −D2
hU

h(xJ) ≤ 0. By assumption, −D2
hU

h(xJ) = f(xJ) > 0. Thus, 0 <
−D2

hU
h(xJ) ≤ 0, which is a contradiction. �

In fact, the discrete maximum principle is much more general than just Poisson’s
equation which is part of the homework.

We can prove the desired stability result.

Proof of discrete stability. The proof also follows similarly to the proof of stability
of the continuous problem. We first define M = maxx∈[0,1] |f(x)|.

Let Ũh : {xj}Nj=0 be defined by

W h(xj) = (M + ε)xj(1− xj)

for ε > 0. One can check that for 0 ≤ xj ≤ 1:

D2
hW

h(xj) = −(2M + 2ε) and 0 ≤ W h(xj) ≤M + ε.

We repeat the arguments of the stability result for the continuous Poisson equation.
Step 1. (upper bound) We define Ũh = W h − Uh. Then,

−D2
hŨ

h(xj) = −D2
hW

h(xj) + D2
hU

h(xj) = (2M + 2ε)− f(xj) ≥M + ε > 0,

and
Ũh(0) = W h(0) = 0.

Applying the discrete maximum principle yields

0 ≤ Ũh(xj) =⇒ Uh(xj) ≤ W h(xj) ≤M + ε.

Step 2. (lower bound) We define Ûh = W h + Uh. Then, apply the arguments of
Step 1 to get that Uh(xj) ≥ −M − ε.

Note that we have shown |Uh(xj)| ≤ M + ε. Since ε > 0 was arbitrary, we can
take a limit ε→ 0 to get |Uh(xj)| ≤M , which is the desired stability result. �
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