COMPUTATIONAL PDE LECTURE 25

LUCAS BOUCK

1. Outline of this lecture

• Discuss schemes for nonlinear conservation laws

2. Setup

We are trying to solve the following nonlinear conservation law on the whole real line:

(1)
$$\begin{cases} u_t(t,x) + \partial_x [f(u(t,x)] = 0, \quad t > 0, x \in \mathbb{R} \\ u(0,x) = u_0(x) \end{cases}$$

An important concept that solutions to (2) is mass conservation

$$\frac{d}{dt}\int_{\mathbb{R}}u(t,x)dx=0,$$

which we have shown in previous lectures. An important consequence of mass conservation is what is known as order preservation.

Proposition 2.1 (order preservation). Let u, v be two solutions (2) with $u(0, x) = u_0(x)$ and $v(0, x) = v_0(x)$. If $u_0(x) \le v_0(x)$ for all $x \in \mathbb{R}$, then $u(t, x) \le v(t, x)$ for all $x \in \mathbb{R}, t > 0$.

Proof. A fact that we first use about is that the difference of two solutions is controlled by the difference of the initial conditions in an integral sense, i.e.

$$\int_{\mathbb{R}} |v(t,x) - u(t,x)| dx \le \int_{\mathbb{R}} |v_0(x) - u_0(x)| dx$$

This fact is actually quite difficult to prove. Once we have it though, we use the assumption that $v_0(x) - u_0(x) \ge 0$ and we can drop the absolute value and apply the mass conservation property

$$\int_{\mathbb{R}} |v_0(x) - u_0(x)| dx = \int_{\mathbb{R}} v_0(t, x) - u_0(t, x) dx = \int_{\mathbb{R}} v(t, x) - u(t, x) dx.$$

Date: November 03, 2023.

Hence, we have

$$\int_{\mathbb{R}} |v(t,x) - u(t,x)| dx \le \int_{\mathbb{R}} v(t,x) - u(t,x) dx.$$

This implies $v(t,x) \ge u(t,x)$ because if not, then the integral on the LHS would become larger and contradict the above inequality.

3. Order preserving numerical schemes

A successful numerical method for (2) will mimic the order preservation property. This property is known as monotonicity:

Definition 3.1 (monotonicity). We say a numerical iteration that maps \mathbf{U}^n to \mathbf{U}^{n+1} is monotone if for $\mathbf{V}_i^n \geq \mathbf{U}_i^n$ for all j, then $\mathbf{V}_i^{n+1} \geq \mathbf{U}_i^{n+1}$.

We now list some monotone schemes for (2).

• Upwind Suppose $f'(u) \ge 0$ for all $u \in \mathbb{R}$, then the upwind scheme is

$$\frac{\mathbf{U}_{j}^{n+1} - \mathbf{U}_{j}^{n}}{\tau} + \frac{f(\mathbf{U}_{j}^{n}) - f(\mathbf{U}_{j-1}^{n})}{h} = 0$$

• Lax-Fredrichs The Lax-Fredrichs scheme is

$$\frac{\mathbf{U}_{j}^{n+1} - \frac{1}{2}(\mathbf{U}_{j+1}^{n} + \mathbf{U}_{j-1}^{n})}{\tau} + \frac{f(\mathbf{U}_{j+1}^{n}) - f(\mathbf{U}_{j-1}^{n})}{2h} = 0$$

These schemes are both monotone under assumptions on f. We first list the result for upwind:

Proposition 3.1 (monotonicity of upwind). Suppose $f'(u) \ge 0$ for all $u\mathbb{R}$ and $f''(u) \ge 0$ for all $u \in \mathbb{R}$, i.e. f is convex. Then upwind is monotone as long as the CFL condition $\tau \le \frac{h}{|f'(u_0)|_{max}}$.

Proof. We only proof the result for f(u) = cu for c > 0, which is the transport equation. Assume $\mathbf{V}_{i}^{n} \geq \mathbf{U}_{i}^{n}$ for all j. We now write

$$\mathbf{U}_{j}^{n+1} = \mathbf{U}_{j}^{n} + \frac{\tau c}{h} (\mathbf{U}_{j-1}^{n} - \mathbf{U}_{j}^{n})$$
$$\mathbf{V}_{j}^{n+1} = \mathbf{V}_{j}^{n} + \frac{\tau c}{h} (\mathbf{V}_{j-1}^{n} - \mathbf{V}_{j}^{n})$$

We now subtract to get

$$\mathbf{V}_{j}^{n+1} - \mathbf{U}_{j}^{n+1} = \left(1 - \frac{\tau c}{h}\right) \left(\mathbf{V}_{j}^{n} - \mathbf{U}_{j}^{n}\right) + \frac{\tau c}{h} \left(\mathbf{V}_{j-1}^{n} - \mathbf{U}_{j-1}^{n}\right).$$

Notice that by the CFL condition, $1 - \frac{\tau c}{h} \ge 0$, and by the fact that we used upwinding, we have $\frac{\tau c}{h} \ge 0$. Since we also have $\mathbf{V}_j^n - \mathbf{U}_j^n \ge 0$ for all j, then $\mathbf{V}_j^{n+1} \ge \mathbf{U}_j^{n+1}$ for all j, which is the desired result

Remark 3.1. We note that the proof of monotonicity for the transport equation is essentially the proof of ∞ norm stability of upwind. In fact, monotonicity implies ∞ norm stability.

Remark 3.2. To prove the above monotonicity result for generic f that is convex, you want to repeat the same arguments but use properties of convex functions like

$$f(y) \ge f(x) + f'(x)(y - x),$$

which means the tangent line of a convex function lies below the graph of said function.

We also have that Lax-Fredrichs is monotone, though we will will not prove it.

Proposition 3.2 (monotonicity of Lax-Fredrichs). Suppose $f''(u) \ge 0$ for all $u \in \mathbb{R}$, i.e. f is convex. Then Lax-Fredrichs is monotone as long as the CFL condition $\tau \le \frac{h}{|f'(u_0)|_{max}}$.

Remark 3.3 (Lax-Wendroff is not monotone). The Lax-Wendroff scheme we developed in previous lectures is not monotone for the transport equation. This can be seen by looking at the following initial condition from Recitation

$$u_0(x) = \begin{cases} 1, & x \in (1/4, 5/4), \\ 0, & \text{otherwise} \end{cases}.$$

We can see numerically in the next plot that Lax-Wendroff is not monotone, while upwind and Lax-Fredrichs are monotone.

