
COMPUTATIONAL PDE LECTURE 25

LUCAS BOUCK

1. Outline of this lecture

• Discuss schemes for nonlinear conservation laws

2. Setup

We are trying to solve the following nonlinear conservation law on the whole real
line:

(1)

{
ut(t, x) + ∂x[f(u(t, x)] = 0, t > 0, x ∈ R
u(0, x) = u0(x)

An important concept that solutions to (2) is mass conservation

d

dt

ˆ
R
u(t, x)dx = 0,

which we have shown in previous lectures. An important consequence of mass con-
servation is what is known as order preservation.

Proposition 2.1 (order preservation). Let u, v be two solutions (2) with u(0, x) =
u0(x) and v(0, x) = v0(x). If u0(x) ≤ v0(x) for all x ∈ R, then u(t, x) ≤ v(t, x) for
all x ∈ R, t > 0.

Proof. A fact that we first use about is that the difference of two solutions is con-
trolled by the difference of the initial conditions in an integral sense, i.e.ˆ

R
|v(t, x)− u(t, x)|dx ≤

ˆ
R
|v0(x)− u0(x)|dx

This fact is actually quite difficult to prove. Once we have it though, we use the
assumption that v0(x) − u0(x) ≥ 0 and we can drop the absolute value and apply
the mass conservation propertyˆ

R
|v0(x)− u0(x)|dx =

ˆ
R
v0(t, x)− u0(t, x)dx =

ˆ
R
v(t, x)− u(t, x)dx.
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Hence, we have ˆ
R
|v(t, x)− u(t, x)|dx ≤

ˆ
R
v(t, x)− u(t, x)dx.

This implies v(t, x) ≥ u(t, x) because if not, then the integral on the LHS would
become larger and contradict the above inequality. �

3. Order preserving numerical schemes

A successful numerical method for (2) will mimic the order preservation property.
This property is known as monotonicity:

Definition 3.1 (monotonicity). We say a numerical iteration that maps Un to Un+1

is monotone if for Vn
j ≥ Un

j for all j, then Vn+1
j ≥ Un+1

j .

We now list some monotone schemes for (2).

• Upwind Suppose f ′(u) ≥ 0 for all u ∈ R, then the upwind scheme is

Un+1
j −Un

j

τ
+
f(Un

j )− f(Un
j−1)

h
= 0

• Lax-Fredrichs The Lax-Fredrichs scheme is

Un+1
j − 1

2
(Un

j+1 + Un
j−1)

τ
+
f(Un

j+1)− f(Un
j−1)

2h
= 0

These schemes are both monotone under assumptions on f . We first list the result
for upwind:

Proposition 3.1 (monotonicity of upwind). Suppose f ′(u) ≥ 0 for all uR and
f ′′(u) ≥ 0 for all u ∈ R, i.e. f is convex. Then upwind is monotone as long as the
CFL condition τ ≤ h

|f ′(u0)|max
.

Proof. We only proof the result for f(u) = cu for c > 0, which is the transport
equation. Assume Vn

j ≥ Un
j for all j. We now write

Un+1
j = Un

j +
τc

h
(Un

j−1 −Un
j )

Vn+1
j = Vn

j +
τc

h
(Vn

j−1 −Vn
j )

We now subtract to get

Vn+1
j −Un+1

j =

(
1− τc

h

)(
Vn
j −Un

j

)
+
τc

h

(
Vn
j−1 −Un

j−1

)
.

Notice that by the CFL condition, 1− τc
h
≥ 0, and by the fact that we used upwinding,

we have τc
h
≥ 0. Since we also have Vn

j −Un
j ≥ 0 for all j, then Vn+1

j ≥ Un+1
j for all

j, which is the desired result �
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Remark 3.1. We note that the proof of monotonicity for the transport equation is
essentially the proof of ∞ norm stability of upwind. In fact, monotonicity implies
∞ norm stability.

Remark 3.2. To prove the above monotonicity result for generic f that is convex,
you want to repeat the same arguments but use properties of convex functions like

f(y) ≥ f(x) + f ′(x)(y − x),

which means the tangent line of a convex function lies below the graph of said
function.

We also have that Lax-Fredrichs is monotone, though we will will not prove it.

Proposition 3.2 (monotonicity of Lax-Fredrichs). Suppose f ′′(u) ≥ 0 for all u ∈ R,
i.e. f is convex. Then Lax-Fredrichs is monotone as long as the CFL condition
τ ≤ h

|f ′(u0)|max
.

Remark 3.3 (Lax-Wendroff is not monotone). The Lax-Wendroff scheme we devel-
oped in previous lectures is not monotone for the transport equation. This can be
seen by looking at the following initial condition from Recitation

u0(x) =

{
1, x ∈ (1/4, 5/4),

0, otherwise
.

We can see numerically in the next plot that Lax-Wendroff is not monotone, while
upwind and Lax-Fredrichs are monotone.
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