COMPUTATIONAL PDE LECTURE 25

LUCAS BOUCK

1. OUTLINE OF THIS LECTURE

e Discuss schemes for nonlinear conservation laws

2. SETUP

We are trying to solve the following nonlinear conservation law on the whole real
line:

(1)

w(t,x) + 0. [f(u(t,z)] =0, t>0,z€R
u(0,x) = ug(x)

An important concept that solutions to is mass conservation

pr Ru(t, z)dr =0,

which we have shown in previous lectures. An important consequence of mass con-
servation is what is known as order preservation.

Proposition 2.1 (order preservation). Let u, v be two solutions ([2) with u(0,z) =
uo(z) and v(0,x) = vo(x). If up(z) < vo(x) for all x € R, then u(t, x) < v(t,x) for
allz e R, t > 0.

Proof. A fact that we first use about is that the difference of two solutions is con-
trolled by the difference of the initial conditions in an integral sense, i.e.

/ lu(t,x) — u(t,x)|de < / |vo(z) — wo(x)|dz
R R
This fact is actually quite difficult to prove. Once we have it though, we use the

assumption that vg(x) — up(x) > 0 and we can drop the absolute value and apply
the mass conservation property

/R|v0(x) — up(z)|dx = /Rvo(t, x) — uo(t, x)dr = /Rv(t,m) —u(t, z)dz.
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Hence, we have

/R\U(t,x) ot 2)|dr < /v(t,a:) _ u(t,z)dx.

R
This implies v(¢,2) > wu(t,x) because if not, then the integral on the LHS would
become larger and contradict the above inequality. 0

3. ORDER PRESERVING NUMERICAL SCHEMES

A successful numerical method for will mimic the order preservation property.
This property is known as monotonicity:

Definition 3.1 (monotonicity). We say a numerical iteration that maps U™ to U™*!
is monotone if for V7 > U’ for all j, then V;”“l > U?H.
We now list some monotone schemes for .
e Upwind Suppose f'(u) > 0 for all u € R, then the upwind scheme is
n+1 n n n
Upt Uy (Up) - (UL
T h
o Lax-Fredrichs The Lax-Fredrichs scheme is
Ut — (U, +Upy) - f(U},) = f(U7)
T + 2h

These schemes are both monotone under assumptions on f. We first list the result
for upwind:

=0

=0

Proposition 3.1 (monotonicity of upwind). Suppose f’(u) > 0 for all uR and
f"(u) > 0 for all uw € R, i.e. fis convex. Then upwind is monotone as long as the
CFL condition 7 < h

|f/(u0)‘mu.:v.
Proof. We only proof the result for f(u) = cu for ¢ > 0, which is the transport
equation. Assume V7 > U? for all j. We now write
TC

U;,LH — U;P + - (U}Ll — U;T‘)
n n TC n n

We now subtract to get

n n+1 TC n n TC n n

Notice that by the CFL condition, 1—%¢ > 0, and by the fact that we used upwinding,
we have Z¢ > 0. Since we also have V;‘ — U;-‘ > 0 for all 7, then V;-LH > U?H for all
J, which is the desired result 0J
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Remark 3.1. We note that the proof of monotonicity for the transport equation is
essentially the proof of oo norm stability of upwind. In fact, monotonicity implies
oo norm stability.

Remark 3.2. To prove the above monotonicity result for generic f that is convex,
you want to repeat the same arguments but use properties of convex functions like

fly) = fx) + f(@)(y — x),

which means the tangent line of a convex function lies below the graph of said
function.

We also have that Lax-Fredrichs is monotone, though we will will not prove it.

Proposition 3.2 (monotonicity of Lax-Fredrichs). Suppose f”(u) > 0 for all u € R,

i.e. f is convex. Then Lax-Fredrichs is monotone as long as the CFL condition
h

TS [Flao)mas

Remark 3.3 (Lax-Wendroff is not monotone). The Lax-Wendroff scheme we devel-

oped in previous lectures is not monotone for the transport equation. This can be

seen by looking at the following initial condition from Recitation

wolz) = 4 1 T € (W/45/4),
O 0, otherwise '

We can see numerically in the next plot that Lax-Wendroff is not monotone, while
upwind and Lax-Fredrichs are monotone.
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