
COMPUTATIONAL PDE LECTURE 1

LUCAS BOUCK

1. Learning goals of the course

• Various types of partial differential equations (PDEs)
– Second order elliptic (applications in electrostatics, steady state heat distribu-

tion)
– Second order parabolic (applications in heat transfer, diffusion, fluids)
– First order hyperbolic (applications in transport, fluids, models of car traffic)
– Second order hyperbolic (applications in fluids, electrodynamics)
• Some analytical techniques to find solutions of PDEs. Some examples of techniques

include
– Separation of variables
– Green’s Functions
– Method of characteristics
• Qualitative behavior of solutions, which may include

– Maximum and variational principles for elliptic problems
– Energy estimates for parabolic equations
– Conservation of energy for hyperbolic equations
• Numerical techniques (specifically finite differences) to approximate the solution

of a PDE leveraging computational power. Other topics around finite differences
will include:
– Discrete maximum principle for elliptic equations
– Euler and Crank-Nicolson time stepping for parabolic equations
– von Neumann analysis for finite difference schemes for parabolic equations
– Upwind finite differences for first order hyperbolic equations

2. Topics from Ordinary Differential Equations (ODEs)

Recall that an ordinary differential equation is about solving for some unknown
function y, where y solves some equation.

Definition 2.1 (ordinary differential equation). An ordinary differential equation is

an equation of some unknown function y : [0, T ]→ R and its derivatives dky
dtk
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Below are some examples that you may have seen in previous courses.

Example 2.1 (exponential growth/decay). Let c ∈ R. The equation

dy

dt
= cy,

describes exponential growth for c > 0 and exponential decay for c < 0. This is an
example of linear, first order ODE.

Example 2.2 (mass-spring system). Let m, k > 0. The equation

m
d2y

dt2
+ ky = 0,

describes the frictionless movement of an object with mass m on the end of spring
with spring constant k. This is an example of a linear, second order ODE.

Example 2.3 (more general ODE). Let f : [0, T ]× R→ R. The equation

dy

dt
= f(t, y),

is describes a general set of first order ODEs. This equation reduces to Example 2.1
if f(t, y) = cy.

2.1. Relevant Questions for ODEs.

• Does there exist solutions y to the ODE? If there exists a solution, is the solution
the only one (i.e. uniqueness)?
– This question is can be answered quite generally for ODEs. For instance, the

initial value problem {
dy
dt

= f(y)

y(0) = y0

has a unique solution on some interval (−T, T ) for T sufficiently small if f is
continuously differentiable. This is a consequence of the Picard-Lindelöf Theo-
rem.

• Can we construct analytical solutions to solve the ODE?
– Often, yes. This was the topic of your previous courses in ODEs and you may

have seen separation of variables, Laplace transform, Fourier transform, and
some other techniques to solve ODEs. It is also sometimes difficult to solve
these equations analytically, and we may need to resort to the next equation

• How can we design numerical methods to approximate the solution of an ODE?

https://mathworld.wolfram.com/PicardsExistenceTheorem.html
https://mathworld.wolfram.com/PicardsExistenceTheorem.html
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– You may have seen Euler’s method for approximating the solution to an ODE.
For the initial value problem{

dy
dt

= f(t, y)

y(0) = y0
.

We may approximate the solution with a time-step τ > 0 and apply the following
iteration {

y0τ = y0
yk+1
τ = ykτ + τf(tk, ykτ )

.

The sequence ykτ approximates the value of the true solution y at time tk = kτ .
This course on PDEs will cover numerical methods like Euler’s method, but for
partial differential equations

3. Partial Differential Equations (PDEs)

For the rest of this course, we will use the notation Ω ⊂ Rd, d = 1, 2, 3 to be an
open domain on which we will solve the PDE. We now state the definition of a PDE.

Definition 3.1 (partial differential equation). An partial differential equation is
an equation of some unknown function u : Ω → R and its partial derivatives
ux, uxx, uy, uxy, etc.

Remark 3.1 (partial derivative notation). We will denote ux to denote the partial
derivative of u with respect to the variable x, i.e. ∂u

∂x
. Some other examples that we

might see are

uxx =
∂2u

∂x2
, uxy =

∂2u

∂x∂y
, ut =

∂u

∂t
, utt =

∂2u

∂t2

3.1. Relevant Questions for PDEs. Below are the questions that we will touch
on for PDEs. One key difference between ODEs and PDEs is that the answer to
these questions are quite general for ODEs, and these answers vary wildly depending
on the type of PDE.

• Does there exist solutions u to the PDE? If there exists a solution, is the solution
the only one (i.e. uniqueness)?
– The question of existence can be quite difficult, but we will see that constructing

analytical solutions can provide proof of existence of solutions. We will focus
more on showing uniqueness, which will prove useful in analyzing the stability
of numerical methods. Such topics we will cover on uniqueness are: maximum
principle for elliptic problems, energy dissipation for parabolic problems, and
energy or mass conservation for hyperbolic problems

• Can we construct analytical solutions to solve the PDE?
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– Sometimes, but it is quite difficult for PDEs. The techniques we will see are
Green’s functions, separation of variables, and methods of characteristics.

• How can we design numerical methods to approximate the solution of an PDE?
– This will be the main focus of this course. We will implement finite difference

methods to approximate the solution of a PDE.

3.2. Examples.

Example 3.1 (Poisson’s or Laplace’s equation). We consider the set with piecewise
smooth boundary. We seek u : R2 → R to be a function that satisfies

uxx(x, y) + uyy(x, y) = f(x, y) for (x, y) ∈ R2.

This equation is known as Poisson’s equation, which is a linear, second order, elliptic
equation. A special case is Laplace’s equation when f(x, y) = 0 for all (x, y) ∈ R2.
One such applications for Poisson’s equation is electrostatics, where u is the electric
potential that arises from a charge density f .

Example 3.2 (heat equation). We consider a set (0, t)×R the set, which is a linear,
second order, parabolic equation. We seek u : (0, t)× R→ R to be a function that
satisfies

ut(t, x)− uxx(t, x) = f(t, x) for (t, x) ∈ (0, t)× R.
This equation is known as the heat equation. This equation models heat transfer with
some heat source/sink f .

Example 3.3 (transport equation). We consider a set (0, t) × R. We seek u :
(0, t)× R→ R to be a function that satisfies

ut(t, x) + c(t, x)ux(t, x) = f(t, x) for (t, x) ∈ (0, t)× R.
This equation is known as the transport equation, which is a linear, first order, hy-
perbolic equation.

Example 3.4 (wave equation). Let c > 0. We consider a set (0, t) × R. We seek
u : (0, t)× R→ R to be a function that satisfies

utt(t, x)− c2uxx(t, x) = f(t, x) for (t, x) ∈ (0, t)× R.
This equation is known as the wave equation, is a linear, second order, hyperbolic
equation. This equation often describes the motion of a vibrating string and pops up
in electrodynamics.

3.3. Elliptic, Parabolic, Hyperbolic Terminology for Second Order Prob-
lems. We now go through a rough procedure for explaining why we denote these
equations as elliptic, parabolic, and hyperbolic and then highlight a more mechanical
procedure for second order equations with 2 independent variables.
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3.3.1. Heuristic. The following heuristic procedure hopefully helps explain the dif-
ferent terminology for these equations. The procedure is as follows.

• Take an equation and replace the partial derivatives of u with the independent
variables in the subscript. For instance,
– ut will be replaced with t
– uxx would be replaced with x · x = x2

– uxy would be replaced with xy and so on.
• Take any term not multiplying second order derivatives like f(x, y), and replace

them with a constant like 1.
• The algebraic equation built by this procedure will describe an ellipse, parabola,

or hyperbola for second order equations.

We now go over the example equations:

• Poisson’s equation uxx + uyy = f will become x2 + y2 = 1, which is the equation
for a circle, which is a special case of any ellipse.
• The heat equation ut − uxx = f would become t − x2 = 1, which is the equation

for a parabola.
• The wave equation utt − c2uxx = f would become t2 − c2x2 = 1, which is the

equation for a hyperbola as long as c 6= 0.

This procedure is just a heuristic. We can make things more concrete.

3.3.2. Classification of Elliptic, Parabolic, and Hyperbolic 2nd Order Equations in
2D. Consider the following second order linear PDE

A(x, y)uxx+
B(x, y)

2
uxy+

B(x, y)

2
uyx+C(x, y)uyy+b(x, y)·∇u(x, y)+c(x, y)u(x, y) = f(x, y),

and write the matrix

M(x, y) =

(
A(x, y) B(x,y)

2
B(x,y)

2
C(x, y)

)
.

Note that at any point (x, y), the matrix M(x, y) is symmetric, so it has 2 real
eigenvalues λ1(x, y) and λ2(x, y). The table below gives a classification of the PDE
at the point (x, y):

Elliptic λ1(x, y) 6= 0, λ2(x, y) 6= 0 and λ1(x, y), λ2(x, y) have the same sign
Parabolic λ1(x, y) = 0 or λ2(x, y) = 0

Hyperbolic λ1(x, y) 6= 0, λ2(x, y) 6= 0 and λ1(x, y), λ2(x, y) have the opposite sign

We now use this criteria on the 2nd order examples from before.

• Poisson’s equation uxx + uyy = f :

M(x, y) =

(
1 0
0 1

)
=⇒ λ1 = λ2 = 1,



6 LUCAS BOUCK

so Poisson’s equation is elliptic.
• Heat equation ut − uxx = f :

M(x, y) =

(
0 0
0 1

)
=⇒ λ1 = 0, and λ2 = 1,

so the heat equation is parabolic.
• Wave equation utt − c2uxx = f :

M(x, y) =

(
1 0
0 −c2

)
=⇒ λ1 = 1, and λ2 = −c2,

so the wave equation is hyperbolic as long as c 6= 0.

Remark 3.2 (lower order terms and PDE classification). The lower order terms
b(x, y)·∇u+c(x, y)u(x, y) did not impact the classification of the PDE. What matters
are the 2nd order terms.

Remark 3.3 (vector and matrix notation). We’ll use bold face with lower case letter
to denote vectors. For example, at a point (x, y), we have

b(x, y) = (b1(x, y), b2(x, y))T ∈ R2.

Also, the notation · denotes the dot product of two vectors, so

a · b = a1b1 + a2b2.

We’ll use bold face with upper case letters to denote a matrix. For example at a point
(x, y), we have

M(x, y) ∈ R2×2.
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